
Benchmarking Typestate-Oriented Programming Languages

Benjamin W. Chung
Carnegie Mellon University
bwchung@andrew.cmu.edu

Abstract
The performance of typestate-oriented programming lan-
guages is difficult to evaluate as existing benchmarks do
not exercise the unique features of these languages. We ad-
dress this by developing a new benchmark suite specifically
designed to evaluate typestate-oriented functionality. These
benchmarks model projected applications, providing over-
head and memory loads similar to actual applications.

Categories and Subject Descriptors D.2.8 [Software En-
gineering]: Metrics; D.3.3 [Programming Languages]: Lan-
guage Constructs and Features

General Terms Performance, Experimentation

Keywords Typestate, Protocols, Benchmarks,
Performance, Dynamic Behavior

1. Introduction
Typestate-oriented programming languages raise the level of
abstraction by directly expressing protocols, while maintain-
ing a similar underlying structure to that of other dynamic
languages. As dynamically modified interfaces are widely
used in many applications, such as many Javascript applica-
tions and some virtual machines [2, 4], protocol alteration is
a very important part of programming in dynamic languages.
However, even in existing dynamic programming languages,
interface alteration after object creation remains unexamined
by many leading benchmark suites [5].

2. Plaid
Plaid is a new programming language being developed to
support the idea of first-class state [6]. Each state can have
fields and methods, and methods can transition the receiver.
This enables several new design concepts that are little used
in more traditional object-oriented languages.

Copyright is held by the author/owner(s).
SPLASH’12, October 19–26, 2012, Tucson, Arizona, USA.
ACM 978-1-4503-1563-0/12/10.

1 state Socket {
2 val identifier;
3 }
4 state ClosedSocket case of Socket {
5 method open() {
6 this <- OpenSocket;
7 }
8 }
9 state OpenSocket case of Socket {
10 method read() { ... }
11 method write() { ... }
12 method close() {
13 this <- ClosedSocket;
14 }
15 }

Figure 1. A basic Plaid program

An example of Plaid code can be found in Figure 1,
which models a simple socket representation with two states,
ClosedSocket and OpenSocket. Socket can transition be-
tween the two states via the open and close methods, and
both expose custom functionality depending on the state they
are in.

3. Existing Benchmarks
Existing benchmark suites are focused primarily on deter-
mining the speed of a system at performing certain algo-
rithms, such as manipulating a splay tree1. It has been shown
that these standard metrics are not representative of real-
world application speed, and that optimizations targeting
these benchmarks do not always improve speed of applica-
tions [1, 3]. In addition, little work has been done towards
a benchmark suite for a typestate-oriented language such as
Plaid. Two suites, DaCapo and V8, are particularly relevant
for our project, as they represent commonly used benchmark
suites for large programs and dynamic languages, respec-
tively.

DaCapo DaCapo is a benchmark suite written to analyze
the performance of Java Virtual Machines (JVMs) in actual
use cases. It uses a selection of benchmarks that are common
applications for the JVM, primarily based on large open-
source software projects. This core causes the suite to repre-
sent the performance of a large number of Java applications,

1 http://v8.googlecode.com/svn/data/benchmarks/v7/run.html

239



Figure 2. State diagram for implementation of the action
pattern.

as many applications either use the frameworks that make up
DaCapo or use similar algorithms and memory structures to
them [1]. However, this same functionality makes it difficult
to apply the DaCapo suite to the typestate-oriented model,
as it is highly Java specific.

V8 The V8 benchmark suite was written by the V8 team
to act as a measure of the speed of the V8 Javascript en-
gine. The V8 benchmark uses algorithmic benchmarks to ar-
rive at a composite number, such as the DeltaBlue constraint
solver2. Despite this popularity, V8 has significant disadvan-
tages, focusing primarily on mathematical speed, rather than
dynamic functionality.

4. Design Goals
Benchmarks that accurately represent the performance of a
real application are hard to create by using small programs
that a single algorithms. To mitigate this issue, we will cre-
ate programs that perform tasks that are similar to those that
a actual user might need. These programs should run algo-
rithms that are reasonable use cases for the language, and
should run in a reasonable amount of time. The use of a
typestate-oriented language also imposes some requirements
on the type of benchmarks used, so benchmarks should use
state change regularly to evaluate the performance of proto-
col dynamism in Plaid.

5. Proposed Benchmarks
We have several benchmarks planned for the suite, that ana-
lyze several categories of application. We will be using a ba-
sic transactional database as well as heavily modified tradi-
tional benchmarks, such as sorting benchmarks and a subset
of V8. These will benchmark different aspects of a potential
real application.

Transactional Database A transactional database has fea-
tures that can be modeled easily via typestate, such as the un-
derlying tree data structure and the actions on the database.
This benchmark will preform a large number of sequential
operations on a B-tree data structure. Typestate can be used
to implement the transaction system via a modification state,
which tracks whether a particular node in the B-tree has been
modified. This system can allow rollbacks of a transaction
simply by changing the state of the affected nodes within
the tree. A diagram of this model can be seen in Figure 2.

2 https://developers.google.com/v8/design

Benchmark Plaid Javascript Java
Shell Sort 4.19 .131 .022
Binary Search Tree 1.09 .41 .0017
Splay Tree 18.26 .28 .11

Table 1. Preliminary comparison of execution times in sec-
onds

Algorithmic We also plan on porting traditional bench-
marks from the V8 suite into Plaid, to analyze the speed of
the Plaid runtime at executing standard algorithms, despite
the limitations discussed above. In addition, we have created
two more benchmarks to provide simpler, garbage collec-
tor intense operations. This reuse of traditional benchmarks
also enables comparison of Plaid to the original language. In
many cases, the more traditional benchmarks can be modi-
fied to take advantage of typestate oriented functionality. The
Richards and BST benchmarks both use state change exten-
sively. This is caused by the prevalence of state and state-like
patterns in traditional object-oriented code.

6. Results
Current Benchmarks At the present time, we only have a
small subset of the V8 suite, as well as our new algorith-
mic benchmarks. Javascript versions of all of our current
benchmarks exist, allowing us to compare the existing per-
formance of Plaid to V8.

Results Using our preliminary benchmarks, we have de-
termined that Plaid is approximately 1 order of magnitude
slower than the equivalent JavaScript program, and 2 orders
slower than the equivalent Java program, as seen in table 1.
All of the preliminary benchmarks were highly algorithmi-
cally centered, with large memory usage and extreme rep-
etition and recursion. Results were gathered on a computer
running the 1.6 JRE on Windows 7 with a Intel Core i7-
2760QM CPU at 2.40GHz, and 8.00 GB DDR3 PC3-10600
RAM.

References
[1] S. M. Blackburn, R. Garner, B. Wiedermann, and et al. The Da-

Capo benchmarks: Java benchmarking development and analy-
sis. In OOPSLA ’06.

[2] A. Gal, B. Eich, M. Shaver, D. Anderson, and et al. Trace-
based just-in-time type specialization for dynamic languages.
In ACM SIGPLAN 2009, PLDI ’09.

[3] M. Maass and I. Shafer. Instrumenting V8 to measure the
efficacy of dynamic optimizations on production code. 2012.

[4] G. Richards, S. Lebresne, B. Burg, and J. Vitek. An analysis
of the dynamic behavior of javascript programs. In ACM
SIGPLAN 2010, PLDI ’10, 2010.

[5] G. Richards, A. Gal, B. Eich, and J. Vitek. Automated con-
struction of javascript benchmarks. SIGPLAN Not., 2011.

[6] J. Sunshine, K. Naden, S. Stork, J. Aldrich, and E. Tanter. First-
class state change in plaid. In OOPSLA ’11.

240




