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We describe a successive convex programming (Sequential Convex Programming (SCP))
based approach for estimate the set of points where a 5-degree of freedom (5-DoF) reusable launch
vehicle (RLV) returning to a landing site can transition from aerodynamic to propulsive descent.
Determining the set of feasible ignition points that a RLV can use and then safely land is important
for mission planning and range safety. However, past trajectory optimization approaches
for RLVs consider substantially simplified versions of the vehicle dynamics. Furthermore, prior
reachability analysis methods either do not extend to the full constraint set needed for an RLV
or are too beset by the curse of dimensionality to handle the full 5-DoF dynamics.

To solve this problem, we describe an algorithm that approximates the projection of a high
dimensional reachable set onto a low dimensional space. Instead of computing all parts of
the reachable space, we only calculate reachability in the projected space of interest by using
repeated trajectory optimization to sample the reachable polytope in the reduced space. The
optimization can take into account initial and terminal constraints as well as state and control
constraints.

We show that our algorithm is able to compute the projection of a reachable set into
a low dimensional space by calculating the feasible ignition points for a two-phase aerody-
namic/propulsive RLV landing trajectory, while also demonstrating the aerodynamic divert
enabled by our body and fin actuator model.

I. Introduction
Returning to land is an important part of the lifecycle of a reusable launch vehicle. Such return trajectories include

both aerodynamic and propulsive descent guidance phases due to minimum throttle and relight count limitations. Most
reusable launch vehicles have minimum thrust-to-weight ratio greater than 1 on touchdown, placing substantial pressure
on trajectory generation.

As part of returning to a launch site a reusable vehicle must first reach a state from which it may propulsively land:
too far away and it runs out of fuel before it touches down, too close and it hits the ground at substantial velocity.
Moreover, range safety requirements frequently require that an aero-ballistic returning stage not be aimed at the landing
site until it has successfully relit its engine and transitioned from aerodynamic to propulsive guidance [1]. Consequently,
a returning booster must maneuver aerodynamically to put its ignition point into a safe location and yet still be able to
reach the desired landing site under power.

The next question that arises is: given an initial state and a landing site where can the divert maneuver be performed?
The returning stage can maneuver aerodynamically to reach the point from which it must be able to land without running
out of fuel or shutting its engine down again as illustrated in Figure 1. If we can compute such a reachable volume we
can then choose where in the volume reignition occurs and powered descent guidance begins based on range safety and
other concerns.

Trajectory optimization for low-fidelity 6-degree of freedom (6-DoF) reusable launch vehicle models has remained
immature, with either simplistic drag-only aerodynamic models [2] that are unsuitable for modeling aerodynamic
maneuvers or reduced models with limited aerodynamic control modeling [3].

Reachability analysis adds a further challenge to the problem. Superficially, we wish to compute a 11-dimensional
reachability analysis for a system subject to initial, final, and intermediate state and control constraints. This is untractable
for most reachability techniques. For example, Hamilton-Jacobi methods are all beset by the curse of dimensionality [4]
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Fig. 1 Schematic representation of two-phase aerodynamic descent guidance.

due to having to build and propagate representations of past reachable states while direct set computation approaches [5]
cannot guarantee satisfaction of future state constraints. Similarly, sampling-based methods [6] are limited in their
ability to handle state and control constraints.

Reachability of all dimensions and all time is intractable for our problem. However, we only care about a subset
of the dimensions—the rocket’s position—at a specific time: ignition. Accordingly, we are only truly interested in
a 3-dimensional reachability problem for a single point. Reachability for our problem can therefore be reduced to
identifying the volume in 3-dimensional space which is somehow reachable from the initial and final conditions in
11-dimensional space. We can do this using trajectory optimization.

We propose a trajectory optimization approach based on Sequential Convex Programming (SCP) for identifying
the reachable set of ignition points for an aerodynamically-controlled launch vehicle. Previous work on trajectory
optimization based reachability required a convex dynamics [7] or only considered landing site reachability for the
simpler exoatmopsheric lander dynamics [8]. By combining a new formulation of nonlinear axisymmetric body
aerodynamics for better problem space exploration with trajectory optimization based sampling we can approximate
reachable intermediate points even with highly nonlinear dynamics.

II. Problem Description
We aim to approximate the reachable volume for an intermediate point on a trajectory that satisfies initial and

terminal conditions. In this section, we will describe the continuous-time nonlinear powered landing problem beginning
with the vehicle dynamics, followed by the continuous-time objective, boundary conditions, and state and control
constraints.
We are focused on the two-phase powered descent guidance problem, where an aerodynamically and propulsively
actuated rotationally axisymmetric vehicle undergoes two phases:

1) Aerodynamic flight where the engine is shut off, and
2) Propulsive flight after engine ignition.

The time spent in each phase may vary so long as the boundary conditions and path constraints are satisfied. We wish to
identify the volume in which the transition can occur while satisfying all other requirements.
Our model uses three reference frames:

1) 𝐹𝐼 , a surface fixed (rotating around the center of the planet) North-East-Up reference frame with the origin at the
landing site.

2) 𝐹𝐵, a vehicle-fixed frame centered at the vehicle center-of-mass, with its Z axis pointing out the nose of the
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vehicle and the X and Y axes chosen to be jointly perpendicular to Z and aligning with the axes in 𝐹𝐼 if the
vehicle is unrotated.

3) 𝐹𝑊 , a vehicle-fixed frame centered at the vehicle center-of-mass, with its Z axis pointing opposite the air-relative
velocity vector and the X and Y axes constructed from 𝐹𝐼 by the minimum rotation around 𝐹𝐼 ’s N/E axes such
that the new Z axis is opposite the velocity vector.

We notate the frame that a variable inhabits with a subscript; for example, 𝑟𝐼 (𝑡) is the vehicle’s position in the inertial
frame. The construction of 𝐹𝐵 and 𝐹𝑊 will be covered in more detail later in this section.

A. Vehicle Model
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Fig. 2 Vehicle dynamics

The vehicle is modeled as a rigid body. It possesses the states:
• Mass: 𝑚(𝑡) ∈ R
• Position: 𝑟𝐼 (𝑡) ∈ R3

• Velocity: 𝑣𝐼 (𝑡) ∈ R3

• Body-to-inertial rotation: 𝑅𝐵/𝐼 (𝑡) ∈ R2

• Angular rate: 𝜔𝐵 (𝑡) ∈ R2

Since our vehicle is axisymmetric we only allow it to rotate along the north and east axes in the inertial frame; the
rotation about the body up axis is fixed. Accordingly, our model is 5-degree of freedom (5-DoF) rather than 6-DoF.
Consequently, we can use a simple pair of Euler angles to represent the vehicle’s attitude. In order to reduce the number
of needed discretization nodes we also apply a damping coefficient 𝐶damp to its attitude dynamics that approximates the
affects of 𝐶𝑚,𝑞 and 𝐶𝑚, ¤𝛼 though the same effect could be achieved with a feedback controller.
Denoting the forces applied to the vehicle as 𝐹𝐼 (𝑡) and torques 𝑀𝐵 (𝑡), our basic equations of motion then follow as:

¤𝑚(𝑡) =
| |𝑢𝐵,𝑅 (𝑡) | |2

𝑔𝐼𝑠𝑝
(1)

¤𝑟𝐼 (𝑡) = 𝑣𝐼 (𝑡) (2)

¤𝑣𝐼 (𝑡) =
𝐹𝐼 (𝑡)
𝑚(𝑡) + 𝐴𝐼,𝑔 (𝑡) + 𝐴𝐼,𝑐 (𝑡) + 𝐴𝐼,𝑟 (𝑡) (3)

𝐹𝐼 (𝑡) = 𝑇𝐵/𝐼 (𝑅𝐵/𝐼 (𝑡)) (𝑢𝐵,𝑅 (𝑡)) + 𝐹𝐼, 𝑓 𝑖𝑛𝑠 (𝑡) + 𝐹𝐼,𝑏𝑜𝑑𝑦 (𝑡) (4)
¤𝑅𝐵/𝐼 (𝑡) = 𝜔𝐵 (𝑡) (5)

¤𝜔𝐵 (𝑡) =
[
1 0 0
0 1 0

]
(𝐽−1

𝐵 (𝑡) × 𝑀𝐵 (𝑡)) − 𝐶damp𝜔𝐵 (𝑡) (6)

𝑀𝐵 (𝑡) = 𝑟𝐵,𝑒𝑛𝑔𝑖𝑛𝑒 × 𝑢𝐵 (𝑡) + 𝑇𝐼/𝐵 (𝑅𝐵/𝐼 )𝑀𝐼,𝑏𝑜𝑑𝑦 (𝑡) + 𝑀𝐵, 𝑓 𝑖𝑛𝑠 (𝑡) (7)

𝐽𝐵 (𝑡) = 𝐽𝐵,𝑑𝑟𝑦 +
𝑚(𝑡) − 𝑚𝑑𝑟𝑦

𝑚𝑤𝑒𝑡 − 𝑚𝑑𝑟𝑦

(𝐽𝐵,𝑤𝑒𝑡 − 𝐽𝐵,𝑑𝑟𝑦) (8)
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where × is the cross product. We denote the transformation matrix from frame 𝐵 to 𝐼 as 𝑇𝐵/𝐼 (𝑅𝐵/𝐼 (𝑡)).
Reusable launch vehicles tend to have a large fuel fraction relative to their structural mass and therefore their moment of
inertia changes meaningfully with fuel depletion. We approximate the dependence with a linear interpolation between
the wet and dry moments of inertia, as depicted in Eq. (8).

We have two types of control:
• Aerodynamic, represented as a force 𝑢𝑊,𝑎 (𝑡) applied to the vehicle at a fixed position relative to its center of

mass, and
• Propulsive, represented as a force 𝑢𝐵,𝑅 (𝑡) applied by the rocket at an offset 𝑒𝐵 from the vehicle’s center of mass.

Propulsive control is dispatched with easily through inclusion in the mass depletion dynamics Eq. (1), in the translational
dynamics Eq. 4 as transformed by the the body to inertial rotation, and by inclusion in the body rotational moment
Eq. (7). Aerodynamic controls will be discussed later.

Environmental Modeling We adopt the international standard atmosphere (ISA) [9] as our atmospheric model, which
is used to determine the local atmospheric density 𝜌(𝑟𝐼 ), temperature, and speed of sound 𝑐(𝑟𝐼 ). Aerodynamic data is
then normalized to the reference pressure 𝜌0 which we define as sea level pressure and then scaled in the simulation by
𝜌𝑟 = 𝜌(𝑟𝐼/𝜌0). Similarly, mach number is computed as | |𝑣𝐼 | |2/𝑐(𝑟𝐼 ). We assume that the surface-level temperature is
unchanged from the ISA reference value.
We use a spherical gravity model 𝐴𝐼,𝑔 (𝑡) =

𝜇

| |𝑟𝐼 (𝑡 )−𝑟𝐼,𝑙𝑠 | |32
(𝑟𝐼 (𝑡) − 𝑟𝐼,𝑙𝑠) where 𝑟𝐼,𝑙𝑠 is the location of the center of

the planet as expressed in the inertial reference frame. Furthermore, the planet (and thus our reference frame) are
rotating with angular velocity 𝜔𝐼, 𝑝 inducing Coriolis 𝐴𝐼,𝑐 = 2𝜔𝐼, 𝑝 × 𝑣𝐼 (𝑡) and centrifugal accelerations 𝐴𝐼,𝑟 =

𝜔𝐼, 𝑝 × (𝜔𝐼, 𝑝 × (𝑟𝐼 (𝑡) − 𝑟𝐼,𝑙𝑠)).

Body Aerodynamics Aerodynamic modeling of axisymmetric bodies for optimization is challenging due to a
singularity in the directions of lift and moment when the body is parallel to the velocity vector. Wings or other lifting
devices would establish directions from which we define lift and slip axes but axisymmetric bodies offer no such
affordances.
We define drag to lie parallel to the flight path vector and lift to be pointed away from the flight path in the direction
that the vehicle is tilted, thereby setting sideslip to be zero. Non-axisymmetric vehicles need to roll to maintain an
explicit zero-sideslip orientation [10] as their rotation around their forward vector changes the applied aerodynamic
forces. However, our vehicle has no aerodynamic dependence on roll angle since it is axisymmetric.
The aerodynamic moment on a cylinder will be applied on an axis perpendicular to the body up and flight path vectors
or 𝑑𝐼,𝑚(𝑡) = 1

| |𝑣𝐼 (𝑡 ) | |2 sin(𝛼(𝑡 ) ) 𝑏̂𝐼,𝑧 (𝑡) × 𝑣𝐼 (𝑡). Lift is applied perpendicular to the flight path vector and the aerodynamic
moment vector or 𝑑𝐼,𝐿 (𝑡) = 1

| |𝑣𝐼 (𝑡 ) | |2 𝑣𝐼 (𝑡) × 𝑑𝐼,𝑚 (𝑡). The flight path direction 𝑣̂𝐼 (𝑡), the moment direction 𝑑𝐼,𝑀 , and
the lift direction 𝑑𝐼,𝐿 now forms an orthogonal basis.
Accordingly, basic equations for aerodynamic lift, drag, and moment are

𝐿𝐼 (𝑡) =
1
2
𝜌(𝑡) 𝐶𝑙 (𝛼(𝑡), 𝑀 (𝑡)) | |𝑣𝐼 (𝑡) | |22 𝑑𝐼,𝐿 (𝑡) (9)

𝐷 𝐼 (𝑡) = −1
2
𝜌(𝑡) 𝐶𝑑 (𝛼(𝑡), 𝑀 (𝑡)) | |𝑣𝐼 (𝑡) | |2 𝑣𝐼 (𝑡) (10)

𝑀𝐼 (𝑡) =
1
2
𝜌(𝑡) 𝐶𝑚 (𝛼(𝑡), 𝑀 (𝑡)) | |𝑣𝐼 (𝑡) | |22 𝑑𝐼,𝑚(𝑡) (11)

𝐹𝐼,𝑏𝑜𝑑𝑦 (𝑡) = 𝐿𝐼 (𝑡) + 𝐷 𝐼 (𝑡). (12)

This version of drag has no singularities and can thus readily be used for optimization. Observe, however, that the
computation of 𝑑𝐼,𝑚 (𝑡) normalizes the cross product 𝑏̂𝐼,𝑧 × 𝑣𝐼 (𝑡) by dividing by the angle of attack 𝛼(𝑡). Accordingly,
a singularity exists at 0 degrees angle of attack when there is no tilt angle to reference our frame to. This is undesirable
as the reusable launch vehicle must land at a very low angle of attack.
We simplify the lift formulation to solve this problem with two observations:

1) At 𝛼(𝑡) = 0 the value of 𝐶𝑙 (𝛼(𝑡), 𝑀 (𝑡)) is not relevant since the body-up vector 𝑏̂𝐼,𝑧 is parallel to 𝑣𝐼 (𝑡) and thus
| |𝑣𝐼 (𝑡) × (𝑏̂𝐼,𝑧 (𝑡) × 𝑣𝐼 (𝑡)) | |2 = 0.

2) Lift of axisymmetric bodies typically has a nearly linear relationship to 𝛼 at low angles of attack.
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These properties can be exploited to smooth out the singularity by factoring 1
sin(𝛼) = csc(𝛼) into the lookup table for 𝐶𝑙

to form the lookup table 𝐶𝑙,mod.

𝐶𝑙,mod (𝛼, 𝑀) =
{

𝐶𝑙 (𝛼, 𝑀) csc(𝛼) 𝛼 ≠ 0
0 𝛼 = 0

(13)

For nonzero angles of attack, we premultiply the value in the lookup table by csc(𝛼), while at 0 angle of attack we
simply let the lookup table value be 0. The linearity of lift and torque at small 𝛼 causes error to remain small between 0
and the first nonzero data point, while no lift or torque is produced at 0 angle of attack.
Including the normalization csc(𝛼) in the lookup table then lets us define body lift and moment as follows:

𝐿𝐼 (𝑡) =
1
2
𝜌(𝑡) 𝐶𝑙,𝑚𝑜𝑑 (𝛼(𝑡), 𝑀 (𝑡)) 𝑣𝐼 (𝑡) × (𝑏̂𝐼,𝑧 (𝑡) × 𝑣𝐼 (𝑡)) (14)

𝑀𝐼,𝑏𝑜𝑑𝑦 =
1
2
𝜌(𝑡) 𝐶𝑚,𝑚𝑜𝑑 (𝛼(𝑡), 𝑀 (𝑡)) | |𝑣𝐼 (𝑡) | |2 (𝑏̂𝐼,𝑧 (𝑡) × 𝑣𝐼 (𝑡)). (15)

The velocity normalization factors | |𝑣𝐼 (𝑡) | |22 are factored singly and doubly into the cross products for torque and lift,
respectively, and including csc(𝛼(𝑡)) in the lookup table 𝐶𝑚,𝑚𝑜𝑑 (𝛼(𝑡), 𝑚) allows us to use the cross product magnitude
to calculate lift and drag directly.
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Figures 3 and 4 show the relative and absolute force error as a function of angle of attack at mach 0.9. We evaluated
the reference medium-fidelity lift and drag models for the vehicle in a fixed 0 degree fin actuation down to 1 deg
angle of attack. Out to the limit of the underlying look up table, the modified lookup table maintains good agreement
(< 2%) to the linear interpolation of the original look up table. However, below the minimum available angle of attack
the approximation loses validity. Absolute error below the end of the lookup table is small in absolute terms and
proportional to the force at the cutoff minimum nonzero angle of attack in the reference lookup table.

Actuator Aerodynamics Most reusable launch vehicles use four fins in a cross pattern at the top of the first stage for
aerodynamic control. For simplicity, we consider a vehicle with fins located 90 deg around the circumference of the
vehicle; skewed configurations can be analyzed with the same framework but with different force vectors, as discussed
later.

Ultimately, we wish to abstract over exactly how fins produce lift and drag. To reduce the dimensionality of the
control vector, the aerodynamic control vector is expressed as a force applied to the vehicle on a plane perpendicular to

5



1-1

1

-1

𝐶𝑙,1

𝐶𝑙,2

𝐶𝑙,2+ (𝑀, 𝛼1, 𝛼2)

𝐶𝑙,2− (𝑀, 𝛼1, 𝛼2)

𝐶𝑙,1− (𝑀, 𝛼1, 𝛼2)

𝐶𝑙,1+ (𝑀, 𝛼1, 𝛼2)

𝐶𝑑,1

Fig. 5 Fin control constraints and drag polar coupling.

−𝑉

𝐹𝑑,𝑖

𝐹𝑙,𝑖

𝐹𝑎, 𝑓 ,𝑖

𝐵𝑧

𝛼𝑖

𝑉

𝐿1

Fig. 6 Fin force frame.

the velocity vector, and is thus two dimensional. This lift produced by the fins then incurs an induced drag on the vehicle.
Furthermore, for any given attitude and mach number the fins can only produce so much lift before they begin stalling.

Our aerodynamic actuators apply a force calculated in the wind frame; our control is a vector in the plane
perpendicular to the velocity vector that then induces a force opposite the velocity vector (drag). The geometry in the
plane of a single fin pair is shown in Figure 6. Aerodynamic lift is scheduled through a table-derived scale factor from
a normalized -1 to 1 input on each axis. The scale factor is determined by lookup table as a function of the current
mach number and per-plane angles of attack 𝐶 𝑓 𝑖𝑛,𝑙,𝑖 (𝑀 (𝑡), 𝛼1 (𝑡), 𝛼2 (𝑡)) that is normalized by the squared velocity. The
angles of

To account for state-dependent lift control asymmetries like actuator rotation limits and critical angles of attack we
apply an additional table-derived nonlinear box constraint on the control as shown in Figure 5. For each condition the
normalized control 𝑢𝑎 must satisfy the constraint

𝐶𝑙,𝑖− (𝑀, 𝛼1, 𝛼2) ≤ 𝑢𝑎,𝑖 ≤ 𝐶𝑙,𝑖+ (𝑀, 𝛼1, 𝛼2) for 𝑖 ∈ 1, 2. (16)

Induced drag is then coupled to lift through a table-derived drag polar as a function of mach. We observe that for a
given mach and AoA pair induced drag is proportional to squared lift plus a sweep offset that is linear in the cosine of
the opposing angle of attack and the lift squared.

Accordingly, our raw aerodynamic control dynamics in the wind frame are

𝑓 𝑓 ,𝑙,𝑖 (𝑡) = 𝑢𝑎,𝑖 (𝑡) | |𝑣(𝑡) | |22𝐶 𝑓 𝑖𝑛,𝑙,𝑖 (𝑀 (𝑡), 𝛼1 (𝑡), 𝛼2 (𝑡)) (17)

𝑓 𝑓 ,𝑑 (𝑡) = 𝐶 𝑓 𝑖𝑛,𝑑,𝑙𝑖𝑛 (𝑀 (𝑡))
[
cos(𝛼2 (𝑡)) cos(𝛼1 (𝑡))

] [ 𝑓 2
𝑓 ,𝑙,1 (𝑡)
𝑓 2
𝑓 ,𝑙,2 (𝑡)

]
+ 𝐶 𝑓 𝑖𝑛,𝑑,𝑐𝑠𝑡 (𝑀 (𝑡)) 𝑓 𝑇𝑓 ,𝑙 (𝑡) 𝑓 𝑓 ,𝑙 (𝑡) (18)

𝐹𝑊, 𝑓 (𝑡) =

𝑓 𝑓 ,𝑙,1 (𝑡)
𝑓 𝑓 ,𝑙,2 (𝑡)
𝑓 𝑓 ,𝑑 (𝑡)

 . (19)

The actuator forces must then be mapped from the wind frame to the inertial frame. The drag vector is easy: it
merely points reverse of the velocity vector. The lift vectors are harder, as their clock angle around the velocity vector is
determined by the vehicle roll angle. In our problem we fix the vehicle roll angle to align the body axes with the axes of
the inertial frame, so the actuator lift basis vectors are a function only of the velocity.
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We orient the lift vectors by constructing a reference frame whose Z axis is aligned with the velocity vector. Our
construction takes the unrotated body basis vectors (which are initially expressed in the NED inertial reference frame)
and then rotates them so that the Z axis points through the velocity vector. We construct the rotation matrix 𝑅𝑊/𝐼
using Möller and Hughes’s construction [11] that rotates −𝑍̂ around the −𝑍 × 𝑣̂ axis by the smallest angle such that
−𝑅𝑊/𝐼 𝑍̂ is aligned with 𝑣̂. This construction avoids any normalization beyond the computation of 𝑣̂, thereby limiting
the singularities to those that occur at zero velocity and at 180 degrees angle of attack. 𝑅𝑊/𝐼 then relates the forces
calculated in the unrotated inertial axis aligned body frame to the forces applied in the inertial frame from the wind
frame.

The moment from the actuators is calculated trivially as the cross product of the force and the (assumed to be fixed)
mean position of the actuators relative to the body center of mass. The net body-frame contribution of the aerodynamic
actuators to force and moment is therefore:

𝐹𝐼, 𝑓 𝑖𝑛𝑠 (𝑡) = 𝑅𝑊/𝐼 (𝑡) 𝑓 𝑓 ,𝑙 (𝑡) − 𝑣𝐼 (𝑡) ∗ 𝑓 𝑓 ,𝑑 (𝑡) (20)

𝑀𝐵, 𝑓 𝑖𝑛𝑠 (𝑡) =
∑︁
𝑖

𝑟𝐵, 𝑓 𝑖𝑛𝑠 × 𝑅𝐼/𝐵 (𝑡)𝐹𝐼, 𝑓 𝑖𝑛𝑠 (𝑡). (21)

Where 𝑟𝐵, 𝑓 𝑖𝑛𝑠 is the mean position of the fins in the body frame.

B. Dynamic constraints
We enforce initial and final position, velocity, orientation, and angular rate constraints:

𝑟𝐼 (0) = 𝑟𝐼,𝑖 , 𝑣𝐼 (0) = 𝑣𝐼,𝑖 , 𝑅𝐵/𝐼 (0) = 𝑅𝐵/𝐼,𝑖 , 𝜔𝐵 (0) = 𝜔𝐵,𝑖 , 𝑚(0) = 𝑚𝑖 (22)
𝑟𝐼 (𝑡 𝑓 ) = 𝑟𝐼, 𝑓 , 𝑣𝐼 (𝑡 𝑓 ) = 𝑣𝐼, 𝑓 , 𝑅𝐵/𝐼 (𝑡 𝑓 ) = 𝑅𝐵/𝐼, 𝑓 , 𝜔𝐵 (𝑡 𝑓 ) = 𝜔𝐵, 𝑓 (23)

We similarly enforce a mass lower bound:
𝑚(𝑡) ≥ 𝑚𝑑𝑟𝑦 (24)

The thrust vector is constrained to be within the gimbal range of the engine 𝜃�����
�����
[
1 0 0
0 1 0

]
𝑢𝐵,𝑅 (𝑡)

�����
�����
2

≤ tan(𝜃) 𝑢𝐵,𝑅 (𝑡)𝑇

0
0
1

 (25)

less than the maximum thrust,
| |𝑢𝐵,𝑅 (𝑡) | |22 ≤ 𝑢max (26)

and greater than the minimum thrust for the propulsive trajectory.

𝑢min ≤ ||𝑢𝐵,𝑅 (𝑡) | |22 (27)

We impose a glideslope constraint of angle 𝛾 to the propulsive component trajectory.�����
�����
[
1 0 0
0 1 0

]
𝑟𝐼 (𝑡)

�����
�����
2

≤ tan(𝛾) 𝑟𝐼 (𝑡)𝑇

0
0
1

 (28)

We enforce a nonlinear net angle of attack with rolloff constraint:

tanh
(
| |𝑣𝐼 (𝑡) | |2
𝑣small

)
𝛼(𝑡) ≤ 𝛼max (29)

to ensure lookup table validity. We use a hyperbolic rolloff at velocities below 𝑣small as the calculation of 𝛼 has
a singularity at ∥𝑣∥2 = 0. As a result, numerical error near landing can therefore create very large yet practically
meaningless values of 𝛼.
Similarly, we enforce a maximum angular rate constraint

| |𝜔𝐵 (𝑡) | |2 ≤ 𝜔max (30)
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to limit centrifugal loads on the vehicle’s structure.
Additionally, we impose maximum dynamic pressure and maximum dynamic pressure-angle of attack product limits:

1
2
𝜌(𝑡) | |𝑣𝐼 (𝑡) | |22 ≤ 𝑞max (31)

1
2
𝜌(𝑡)𝛼(𝑡) | |𝑣𝐼 (𝑡) | |22 ≤ 𝜒max. (32)

III. Methods
We aim to identify the reachable volume for the transition point between unpowered aerodynamic flight and

powered descent guidance for a resuable launch vehicle. The 5-DoF dynamics and constraints we have described are
highly nonlinear and the system has excessive dimensionality for traditional state-space exploration methods such as
Hamilton-Jacobi methods while the imposed constraints make it unsuitable for set propagation or sampling-based
methods.

The key observation is that we do not care about nonposition state at the ignition points so long as all dynamic
constraints remain satisfied. We can thus avoid the curse of dimensionality if we can avoid examining vehicle attitude as
part of our reachability analysis. We do so using a successive convexification-based trajectory optimization approach to
“fill in” for the unconsidered states.

Unlike trajectory optimization based approaches for convex problems [12], we cannot provide a guarantee that our
computed sets over or underapproximates the reachable space. The reachable set for such a nonlinear problem may
exhibit “holes,” concavities, consist of several disconnected sets, or have protuberances. Our algorithm cannot certify
that the produced volume is either a super or subset of the true reachable space. What the approach does guarantee
is that all of the explored points are actually reachable; we can always identify a feasible trajectory through a given
previously identified point, but cannot always do so for interpolations thereof.

We first describe our method for solving the trajectory optimization subproblems, then examine our approach for
using them to approximate the reachable volume.

Trajectory Optimization Our basic trajectory optimization subproblem is

Problem 1: Reference nonlinear trajectory optimization problem

min
𝑥,𝑢

𝐿 (𝑥, 𝑢)

s.t. Eq. (1), (2), (3), (5), (6), (16), (22), (23), (24),
(25), (26), (27), (28), (29), (30), (31), (32) .

(P1)

Where 𝐿 (𝑥, 𝑢) is a nonlinear objective function of the state and control trajectories.
We perform trajectory optimization by transcribing a nondimensionalized continuous-time model in Modeling-

Toolkit.jl [13] into a discrete transition system via multiple shooting which is then solved using the prox-linear
method [14] with successive convex optimization. Our implementation adopts the penalized trust region method using
the exact 𝐿1 penalty [15] with the adaptive weighting scheme described by Mao et al [16]. More details on the algorithm
can be found in [17].

Our multiple shooting method is the same as that used by Dukeman [10] or Szmuk [2]. The primary distinction is
that we use two different time dilation parameters 𝜏𝑎 and 𝜏𝑝 (for aerodynamic and propulsive, respectively) to “stretch”
nondimensionalized time 𝜏 into physical time 𝑡. Varying 𝜏𝑎 and 𝜏𝑝 then varies the overall flight time and the flight time
of the segments as follows:

𝑡 =

{
𝜏𝑎𝜏 : 𝜏 < 1

2
𝜏𝑝 (𝜏 − 1

2 ) +
1
2𝜏𝑎 : 𝜏 ≥ 1

2

The total time of flight is then 1
2𝜏𝑎 +

1
2𝜏𝑝 .

Aerodynamic controls 𝑢𝑊,𝑎 (𝑡) and propulsive controls 𝑢𝐵,𝑅 (𝑡) are transcribed using first-order-hold. Propulsive
control is only applied when 𝜏 > 1

2 ; otherwise 𝑢𝐵,𝑅 (𝜏) = 0 where 𝜏 < 1
2 .
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𝑛𝐼,𝑖 𝑝

𝑛∗𝐼

𝑑

𝑛𝐼,𝑜

𝑛∗𝐼

𝑑

𝑛𝐼,𝑜

𝑃1𝑃0 𝑃2

Initialization Iteration 1 Iteration 2

Fig. 7 Schematic of reachability algorithm iteration

Constraints are either enforced nodally as part of the convex optimization problem (22), (23), (24), (25), (26), (28), (30)
or through continuous time constraint satisfaction [14] (16), (27), (29), (30), (32), (31). We transcribe Eq. (30) both as
a second order cone constraint on each node to improve convergence of the low frequency dynamics and with continuous
time constraint satisfaction (CTCS) to reduce inter-sample constraint violation caused by the high frequency dynamics.
Additionally, while Eq. 16 is a control constraint, it strongly depends on rapidly changing vehicle states so we therefore
transcribe it using CTCS. Unlike Elago et al [14], we convert each CTCS constraint as an independent state variable in
our augmented dynamics to improve the gradients of the sensitivity problems.

Most of the computation for the prox-linear method is incurred in sensitivty analysis of the integrated multiple
shooting subproblems. We compute the Jacobians for each of the subproblems in parallel using SciMLSensitivity [18]
optimized for sparsity using SparseConnecitvityTracer [19] which are then solved on a single thread using the Clarabel
optimizer [20] via JuMP’s disciplined convex programming interface [21].

Reachability Analysis We use a naive version of the defect hull algorithm proposed by Chan [8] to perform reachability
analysis. We first compute a reference trajectory using a min-fuel objective begetting an ignition point 𝑛𝐼,𝑖 𝑝. The
reachability polytope 𝑃𝑖 is then initialized from this singleton.

At each iteration the algorithm, depicted in Figure 7 picks a point 𝑛𝐼,𝑜 on the surface of 𝑃𝑖 and selects a random
direction 𝑑 to serve as an expansion vector. It then solves the defect hull problem:

Problem 2: Defect hull trajectory optimization problem

min
𝑥,𝑢

− 𝜇

s.t. 𝑛𝐼 = 𝑟𝐼 (0.5) = 𝜇𝑑 + 𝑛𝐼,𝑜

Eq. (1), (2), (3), (5), (6), (16), (22), (23), (24),
(25), (26), (27), (28), (29), (30), (31), (32) .

(P2)

The ensuing solution 𝑛∗
𝐼

is then the ignition point farthest from 𝑛𝐼,𝑜 along 𝑑 that retains feasibility with respect to
our state and control constraints. The reachability polytope is then expanded to 𝑃𝑖+1 = convexhull(𝑃𝑖 , 𝑛

∗
𝐼
) and the

process is repeated.
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Fig. 8 Example reusable launch vehicle from Kerbal
Space Program.

𝑚dry 10.088 kg
𝑚wet 19.516 kg
𝐽𝐵,dry diag(4.4, 4.4, 0.040) × 105 kg m−2

𝐽𝐵,wet diag(5.6, 5.6, 0.053) × 105 kg m−2

𝐼sp 300 s
𝑢max 936 kN

𝑟𝐵,engine [0; 0;−4.1]m
𝑟𝐵,fin [0; 0; 9.2]m
𝜃max 10.5◦

𝜔max 15◦

𝐶damp 10

Table 1 Vehicle parameters

IV. Numerical Example
Our example vehicle is a simple vertical takeoff vertical landing reusable launch vehicle in the medium-fidelity 6-DoF

simulator Kerbal Space Program (KSP) using the Ferram Aerospace Research aerodynamics extension. The detailed
parameters are in Table 1, where diag(𝑣) refers to the matrix with 𝑣 on the diagonal.

Our reference scenario depicts a return to launch site trajectory for the first stage on the fictional planet Kerbin,
which imposes several challenges compared to a similar scenario on Earth:

• Kerbin is small. Kerbin’s radius (600 km) is similar to Charon’s. As a result, the tangent plane approximation
breaks down quickly, forcing us to use a spherical altitude model.

• Kerbin rotates very quickly. Kerbin completes a rotation about its axis in only 6 hours, causing rotating reference
frame effects to become quickly noticeable.

• Kerbin is extremely dense. In spite of its small size, Kerbin’s surface gravity is approximately the same as Earth’s.
The gravitational field therefore falls off very quickly, thus causing our use of a spherical gravity model.

• Kerbin has 20% shorter atmosphere than Earth’s, reducing the opportunity for aerodynamic maneuvering.
All four effects would also occur in a similar trajectory on Earth but with smaller magnitudes. The most important
effects of Kerbin’s odd dimensions are the latter two; Kerbin’s rapid gravitational falloff causes errors of approximately
60 m s−1 over trajectories of our duration and its shrunk atmosphere causes peak aerodynamic authority to happen very
close to engine ignition for our trajectories.

Our vehicle was constructed using stock parts in KSP, consisting of five fuel tanks, landing legs, and fin actuators.
Our return scenario depicts only the bottom-most fuel tank being full, with the others empty. KSP models fuel drain in
the stage as occurring from all tanks in the stage at once therein causing the moment of inertia and center of mass to
move rapidly towards the engine as fuel is depleted. By pre-draining the upper tanks, we approximate the real effect of
ullage on the center of mass and moment of inertia.

We extracted aerodynamic data from the game using a custom version of the Kerbal Remote Procedure Call extension
that allowed us to query the aerodynamic forces and torques on the vehicle at different velocities, altitudes, and control
configurations. To extract the data needed to build the aerodynamic lookup tables, we performed sweeps over each angle
of attack axis up to 25 degrees, each plane of aerodynamic control actuation up to 45 degrees, and in mach number
up to mach 3.0. The data at each angle of attack was referenced to the control condition of minimum aerodynamic
force (corresponding to when each actuator was pointed into the wind vector) and the body forces and moments were
then extracted. The drag polar for the fin actuators was then developed from a least squares fit to the lower surface of a
convex hull at this condition.

All code, including our dynamics, convex subproblem solver, reachability analysis implementation, and plot
generation utilities, as well as the modified Kerbal Remote Procedure Call extension and our post-processing scripts
are available in the https://github.com/BenChung/DualPhaseDescent.jl repository. Additionally, we include raw and
processed aerodynamic data for our vehicle alongside the KSP craft file in the repository. The version of the code and
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𝑆𝛼.max 1
𝑆thrust,min 20
𝑆fin,bound 10
𝑆 | |𝜔 | |2 ,max 0.1
𝑆𝑞,max 5 × 10−4

𝑆𝑞𝛼,max 1 × 10−6

Table 2 CTCS constraint
scaling.

𝑟𝐼 [0.5; 2.5; 15]km
𝑣𝐼 [0;−150;−350]m/s

𝑅𝐵/𝐼,𝑖 [−0.98; 0]
𝜔𝐵,𝑖 [0; 0]rad s−1

𝑟 𝑓 [0; 0; 0]m
𝑣 𝑓 [0; 0; 0]m s−1

𝑅𝐵/𝐼, 𝑓 [0; 0]◦

𝜔𝐵, 𝑓 [0; 0]rad s−1

𝛾 60◦

𝑣small 100 m/s
𝜌max 8 × 104 Pa
𝜒max 1 × 106 Pa ◦

Table 3 Trajectory parameters

𝑁 41
𝛽 2.0
𝛼 2.0
𝜌0 0.0
𝜌1 0.25
𝜌2 0.7
𝑟init 8.0
𝑤𝑚 1000
𝑤𝑛 50
𝑤𝑙 100

Table 4 Optimizer parameters Fig. 9 Convergence histories for the min-fuel and min-
time problems.

supporting material as submitted is on Git branch SciTech2025.
The parameters for our reference return problem are given in Table 3. The problem was chosen to be comparable to

the post-retropropulsion trajectory from Falcon 9 missions [22].

Initialization Problem To initialize the reachability analysis we need a reference trajectory from which to start
exploring the feasible ignition points. For illustration, we will show both a min-fuel and min-time version of this
problem. SCP is initialized from a zero-control trajectory propagated forward from the initial condition; for this section,
we set our tolerance at 1e-5. Table 2 shows the CTCS penalty weights we used for each constraint applied in continuous
time. Optimizer parameters are shown in table 4; starting from 𝑟init we expand and contract the trust region weight by 𝛼

and 𝛽 respectively when the relative improvement is better than 𝜌2 or smaller than 𝜌1, and reject the iterate if it is less
than 𝜌0. For convergence, we apply the penalties 𝑤𝑚 to the linearization error of the dynamics, 𝑤𝑛 to the linearization
error of the terminal constraint, and 𝑤𝑙 on the CTCS equality state violation at each iteration.

Convergence histories for the initialization problems are shown in Figure 11.
We show a min-fuel solution in Figure 10. Two features stand out compared to vacuum or lift-free formulations such

as [2]:
• The rocket maneuvers (“swerves”) in the latter phases of the aerodynamic trajectory, reducing the energy going

into the propulsive phase.
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Fig. 10 Initialization min-time trajectory
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Fig. 12 Subproblem convergence history.

• The powered descent is done at nonzero angle of attack until the last phases to use lift to non-propulsively cancel
velocity.

These features are unique to coupled aerodynamic-propulsive optimization; without combining the effects the optimizer
would be unable to trade off position for reduced velocity and therefore reduced fuel consumption.

We would furthermore like to highlight the utility of the CTCS transcription for this problem. The damped attitude
dynamics of the rocket are still much faster than the control or state discretization and are very wont to create inter-sample
constraint violation. By using CTCS, we can minimize this inter-sample constraint violation without needing to refine
our optimization time grid. In particular, we highlight the instantaneous constraint activation shown in the dynamic
pressure and q𝛼 histories.

The no-stall, travel-limited aerodynamic actuator restriction imposed by Eq. (16) are also tracked well with the CTCS
method, with the history shown in the plot of lift commands over the trajectory, where the trajectory tracks a rapidly
changing limit with one or both of its aerodynamic controls.

Reachability We then initialize the reachability analysis from the min-fuel ignition point and expand the hull for
10,000 iterations. Figure 11 shows the convergence rate as a function of polytope volume through the reachability
problem by iteration and by wall clock time. Figure 12 shows the cumulative convergence of each subproblem by SCP
iteration. The curve does not reach 100 % since we reject iterations whose solutions were not dynamically feasible; we
rejected 4.3 % of generated solutions for dynamic infeasibility and 0.02 % due to numerical instabilities encountered
during the solve. Total elapsed time was 4 hours, 20 minutes running on a AMD Ryzen AI 9 HX 370 with 32 threads,
for an average time per defect hull trajectory optimization subproblem of 1.63 seconds; the histogram of running time is
shown in Figure 14.

The reachable polytope computed for our example problem is shown in Figure 13. We visualize only the extremal
(farthest in each cardinal direction) trajectories in each plane for the orthogonal views. We visualize the route of sampled
points taken to construct the extremal points inn the north-up plane in Figure 15, starting from the ignition point of the
initialization trajectory in red and expanding outwards to the surface of the final polytope.

The progress of the polytope expanding shown in Figure 15 illustrates the nonconvexity of the subproblem. The
subproblems make small steps inside of the reachable volume instead of immediately expanding to the reachable frontier.
This slow progress is caused by the individual defect hull tasks falling into local minima based on their initialization
and solution trajectory. The reachability algorithm is then able to expand further by re-initializing from a previously
identified extreme point and escape the local minima only to find another one.

13



N (km)

E (km)

U
 (

km
)

N (km)
-1.0 0.0 1.0

U
 (

km
)

0.0

5.0

10.0

15.0

E (km)
-1.0 0.0 1.0 2.0

0.0

5.0

10.0

15.0

-1.0 0.0 1.0-1.0
0.0

1.0
2.0

0.0

5.0

10.0

15.0

Fig. 13 Reachable ignition polytope with extremal trajectories
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V. Conclusion
We described an approach for approximating the projection of a high-dimensional constrained reachability problem

into a low dimensional space via nonlinear optimization. Our problem is not tractable for traditional reachability
methods: not only does it have 11 state dimensions, it also has state and control constraints that set propagation
based methods cannot easily accommodate. We avoid the curse of dimensionality by focusing only on the relevant
low-dimensional subset of the greater reachable volume, thereby dramatically reducing the dimensionality of the space
we are examining, then explore said volume using nonlinear optimization.

We show that the algorithm works to approximate the feasible ignition points for a 5 degree of freedom model
of an aerodynamically controlled reusable launch vehicle’s axisymmetric first stage while subject to many practical
constraints. We see substantial opportunity for future work, as our approach described here was rather naive. While
our algorithm was able to approximate the reachable volume, it took several hours to do so due to implementation
limitations and sampling inefficiency. We think that several fruitful directions may consist of:

• Customized sparse implementation. Around 30% of our wall clock time was wasted due to convex parsing
overheads; in particular, constructing the sparse constraint matrices and copying them into the solver’s working
memory. Using pre-allocated and customized sparse data structures and a solver optimized for such would provide
an integer speedup. For example, Kamath et al. [23] was able to calculate solutions to a similar nonconvex
trajectory optimization problem in 10 s of ms, though with a considerably smaller state dimension.

• Improved SCP algorithm. New work, such as Auto-SCvx [24, 25], is likely to substantially reduce the iteration
count for subproblem convergence; their problem, which has similar constraints to ours, solved in less than 7
iterations on average.

• GPU implementation. As [8] suggests, the defect hull algorithm is intrinsically very parallelizable, as the selection
of initial points and expansion directions is stochastic and largely independent. Furthermore, the multiple shooting
sensitivity analysis is an embarrassingly parallel process as each of the constituent trajectories can be simulated
independently. Chari et al. [26] used a pure-GPU implementation of SCP and achieved up to 5x uplift compared
to a CPU implementation. CPU-GPU pipelining of convex optimization and sensitivity analysis may yield further
performance uplift.

• Our version of Chan’s defect hull algorithm is very naive in its sampling strategy as it does not use the dual-derived
tangent information that Chan’s proposed algorithm does. We believe that our slow convergence rate in terms of
number of iterations is substantially due to this limitation. Improving reachability sampling efficiency would then
reduce the number of trajectories needed to achieve sufficient polytope volume convergence.
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We believe that nonlinear trajectory optimization based reachability analysis can allow the approximation of projections
of highly nonlinear reachability problems. In this paper, we demonstrated that the approach can work on a practical
multiphase trajectory for a aerodynamically and propulsively controlled reusable launch vehicle by approximating
the spatial volume in which its ignition point can be placed. Furthermore, we believe that there are opportunities for
substantial further algorithmic and implementation optimizations above our algorithm that can yield overall computation
times in the minutes or seconds, instead of hours.

Our approach may also be generalized onto other classes of problem that are tractable for trajectory optimization.
One concept is to extremize a metric like conditional value-at-risk, which has already been explored extensively using
SCP [27, 28] which would then allow for reachability analysis over best and worst case outcomes for a stochastic
system. Another would be to extend our two-phase analysis into a multiphase one derived from temporal and logical
specifications [29] which would allow automatic identification of the state spaces in which transitions could occur.

References
[1] Blackmore, L., “Autonomous precision landing of space rockets,” The Bridge on Frontiers of Engineering, Vol. 4, No. 46, 2016,

pp. 15–20.

[2] Szmuk, M., Reynolds, T. P., and Açıkmeşe, B., “Successive convexification for real-time six-degree-of-freedom powered
descent guidance with state-triggered constraints,” AIAA Journal of Guidance, Control, and Dynamics, Vol. 43, No. 8, 2020, pp.
1399–1413. https://doi.org/10.2514/1.G004549.

[3] Sagliano, M., Heidecker, A., Hernández, J. M., Farì, S., Schlotterer, M., Woicke, S., Seelbinder, D., and Dumont, E.,
“Onboard Guidance for Reusable Rockets: Aerodynamic Descent and Powered Landing,” AIAA Scitech Forum, 2021.
https://doi.org/10.2514/6.2021-0862.

[4] Bansal, S., Chen, M., Herbert, S., and Tomlin, C. J., “Hamilton-jacobi reachability: A brief overview and recent advances,”
Proc. IEEE Conf. on Decision and Control, 2017. https://doi.org/10.1109/CDC.2017.8263977.

[5] Althoff, M., Frehse, G., and Girard, A., “Set propagation techniques for reachability analysis,” Annual Review of Control,
Robotics, and Autonomous Systems, Vol. 4, 2021, pp. 369–395. https://doi.org/10.1146/annurev-control-071420-081941.

[6] Lew, T., and Pavone, M., “Sampling-based reachability analysis: A random set theory approach with adversarial sampling,”
Conference on Robot Learning, 2020. https://doi.org/10.48550/arXiv.2008.10180.

[7] Dueri, D., Açıkmeşe, B., Baldwin, M., and Erwin, R. S., “Finite-horizon controllability and reachability for deterministic and
stochastic linear control systems with convex constraints,” American Control Conference, 2014. https://doi.org/10.1109/ACC.
2014.6859302.

[8] Chan, K. W., “Optimization-Based Reachability Analysis for Landing Scenarios,” Ph.D. thesis, Universität Bremen, 2022.
https://doi.org/10.26092/elib/1922.

[9] ISO 2533:1975, “Standard Atmosphere,” Standard, International Organization for Standardization, Geneva, CH, Mar. 1975.

[10] Dukeman, G., and Calise, A., “Enhancements to an atmospheric ascent guidance algorithm,” AIAA Guidance, Navigation, and
Control Conference and Exhibit, 2003. https://doi.org/10.2514/6.2003-5638.

[11] Möller, T., and Hughes, J. F., “Efficiently Building a Matrix to Rotate One Vector to Another,” Journal of Graphics Tools,
Vol. 4, No. 4, 1999, pp. 1–4. https://doi.org/10.1080/10867651.1999.10487509.

[12] Eren, U., Dueri, D., and Açıkmeşe, B., “Constrained reachability and controllability sets for planetary precision landing
via convex optimization,” AIAA Journal of Guidance, Control, and Dynamics, Vol. 38, No. 11, 2015, pp. 2067–2083.
https://doi.org/10.2514/1.G000882.

[13] Ma, Y., Gowda, S., Anantharaman, R., Laughman, C., Shah, V., and Rackauckas, C., “ModelingToolkit: A Composable Graph
Transformation System For Equation-Based Modeling,” , 2021. Available at https://arxiv.org/abs/2103.05244.

[14] Elango, P., Luo, D., Kamath, A. G., Uzun, S., Kim, T., and Açikmese, B., “Successive Convexification for Trajectory
Optimization with Continuous-Time Constraint Satisfaction,” , 2024. Available at https://arxiv.org/abs/2404.16826.

[15] Bertsekas, D. P., “Necessary and sufficient conditions for a penalty method to be exact,” Mathematical Programming, Vol. 9,
No. 1, 1975, pp. 87–99. https://doi.org/10.1007/BF01681332.

16

https://doi.org/10.2514/1.G004549
https://doi.org/10.2514/6.2021-0862
https://doi.org/10.1109/CDC.2017.8263977
https://doi.org/10.1146/annurev-control-071420-081941
https://doi.org/10.48550/arXiv.2008.10180
https://doi.org/10.1109/ACC.2014.6859302
https://doi.org/10.1109/ACC.2014.6859302
https://doi.org/10.26092/elib/1922
https://doi.org/10.2514/6.2003-5638
https://doi.org/10.1080/10867651.1999.10487509
https://doi.org/10.2514/1.G000882
https://arxiv.org/abs/2103.05244
https://arxiv.org/abs/2404.16826
https://doi.org/10.1007/BF01681332


[16] Mao, Y., Szmuk, M., Xu, X., and Açikmese, B., “Successive convexification: A superlinearly convergent algorithm for
non-convex optimal control problems,” , 2018. Available at https://arxiv.org/abs/1804.06539.

[17] Malyuta, D., Reynolds, T. P., Szmuk, M., Lew, T., Bonalli, R., Pavone, M., and Açıkmeşe, B., “Convex optimization for
trajectory generation: A tutorial on generating dynamically feasible trajectories reliably and efficiently,” IEEE Control Systems
Magazine, Vol. 42, No. 5, 2022, pp. 40–113. https://doi.org/10.1109/MCS.2022.3187542.

[18] Rackauckas, C., Ma, Y., Martensen, J., Warner, C., Zubov, K., Supekar, R., Skinner, D., and Ramadhan, A., “Universal
differential equations for scientific machine learning,” , 2020. Available at https://arxiv.org/abs/2001.04385.

[19] Hill, A., and Dalle, G., “SparseConnectivityTracer.jl,” , Oct. 2024. https://doi.org/10.5281/zenodo.13961066, URL https:
//doi.org/10.5281/zenodo.13961066.

[20] Goulart, P. J., and Chen, Y., “Clarabel: An interior-point solver for conic programs with quadratic objectives,” , 2024. Available
at https://arxiv.org/abs/2405.12762.

[21] Lubin, M., Dowson, O., Dias Garcia, J., Huchette, J., Legat, B., and Vielma, J. P., “JuMP 1.0: Recent improvements
to a modeling language for mathematical optimization,” Mathematical Programming Computation, Vol. 15, No. 3, 2023.
https://doi.org/10.1007/s12532-023-00239-3.

[22] Ecker, T., Karl, S., Dumont, E., Stappert, S., and Krause, D., “Numerical Study on the Thermal Loads During a Supersonic
Rocket Retropropulsion Maneuver,” AIAA Journal of Spacecraft and Rockets, Vol. 57, No. 1, 2020, pp. 131–146.
https://doi.org/10.2514/1.A34486.

[23] Kamath, A. G., Elango, P., Yu, Y., Mceowen, S., Chari, G. M., Carson III, J. M., and Açıkmeşe, B., “Real-Time Sequential
Conic Optimization for Multi-Phase Rocket Landing Guidance,” IFAC World Congress, 2023. https://doi.org/https://doi.org/10.
1016/j.ifacol.2023.10.1444.

[24] Mceowen, S., Calderone, D. J., Tiwary, A., Zhou, J. S. K., Kim, T., Elango, P., and Açikmese, B., “Auto-tuned Primal-dual
Successive Convexification for Hypersonic Reentry Guidance,” , 2024. Under review for the AIAA Jounral of Guidance,
Control, and Dynamics. Available at https://arxiv.org/abs/2411.08361.

[25] Mceowen, S., Calderone, D. J., Tiwary, A., Zhou, J. S. K., Kim, T., Elango, P., and Açikmese, B., “Auto-tuned Primal-dual
Successive Convexification for Hypersonic Reentry Guidance,” AIAA Scitech Forum, 2025.

[26] Chari, G. M., Kamath, A. G., Elango, P., and Açikmese, B., “Fast Monte Carlo Analysis For 6-DoF Powered-Descent Guidance
via GPU-Accelerated Sequential Convex Programming,” AIAA Scitech Forum, 2025. https://doi.org/10.2514/6.2024-1762.

[27] Echigo, K., Sheridan, O., Buckner, S., and Açıkmeşe, B., “Dispersion Sensitive Optimal Control: A Conditional Value-at-Risk-
Based Tail Flattening Approach via Sequential Convex Programming,” IEEE Transactions on Control Systems Technology,
Vol. 32, No. 6, 2024, pp. 2468–2475. https://doi.org/10.1109/TCST.2024.3427910.

[28] Echigo, K., “From Theory towards Flight: Convex Optimization based Approaches for Non-convex, Stochastic, and Realistic
Aerospace Missions,” Ph.D. thesis, University of Washington, Seattle, WA, 2024.

[29] Uzun, S., Elango, P., Garoche, P.-L., and Açıkmeşe, B., “Optimization with Temporal and Logical Specifications via Generalized
Mean-based Smooth Robustness Measures,” arXiv preprint arXiv:2405.10996, 2024. URL https://doi.org/10.48550/arXiv.2405.
10996.

17

https://arxiv.org/abs/1804.06539
https://doi.org/10.1109/MCS.2022.3187542
https://arxiv.org/abs/2001.04385
https://doi.org/10.5281/zenodo.13961066
https://doi.org/10.5281/zenodo.13961066
https://doi.org/10.5281/zenodo.13961066
https://arxiv.org/abs/2405.12762
https://doi.org/10.1007/s12532-023-00239-3
https://doi.org/10.2514/1.A34486
https://doi.org/https://doi.org/10.1016/j.ifacol.2023.10.1444
https://doi.org/https://doi.org/10.1016/j.ifacol.2023.10.1444
https://arxiv.org/abs/2411.08361
https://doi.org/10.2514/6.2024-1762
https://doi.org/10.1109/TCST.2024.3427910
https://doi.org/10.48550/arXiv.2405.10996
https://doi.org/10.48550/arXiv.2405.10996

	Introduction
	Problem Description
	Vehicle Model
	Dynamic constraints

	Methods
	Numerical Example
	Conclusion

