
KafKa: Gradual Typing for Objects
Benjamin Chung, Paley Li, Francesco Zappa Nardelli & Jan Vitek
Northeastern University & INRIA & Czech Technical University

Abstract
A wide range of gradual type systems have been proposed, providing many languages with the
ability to mix typed and untyped code. However, hiding under language details, these gradual
type systems embody fundamentally different ideas of what it means to be well-typed. In this
paper, we show that four of the most common gradual type systems provide distinct guarantees,
and we give a formal framework for comparing gradual type systems for object-oriented languages.
First, we show that the different gradual type systems are practically distinguishable via a three-
part litmus test. We present a formal framework for defining and comparing gradual type systems.
Within this framework, different gradual type systems become translations between a common
source and target language, allowing for direct comparison of semantics and guarantees.

2012 ACM Subject Classification Software and its engineering → Semantics

Keywords and phrases Gradual typing, object-orientation, language design, type systems

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2018.12

1 Introduction
“Because half the problem is seeing the problem”

There never was a single approach to gradual typing. The field was opened by two simulta-
neously published papers. One, by Siek and Taha, typed individual Scheme terms using a
consistency relation, casts being inserted by a type directed translation [18]. The other, by
Tobin-Hochtstadt and Felleisen, described a system allowing programmers to add types to
individual modules, using constraint solving to determine where contracts are needed to pro-
tect typed and untyped code from each other [25]. These two approaches set the tone for a
decade of research. Today, gradual type systems rely on a variety of languages, enforcement
mechanisms with various guarantees; this linguistic diversity is not without consequence,
however, as the very notion of what constitutes an error remains unsettled.

The type system and semantics of a programming language are necessarily tightly cou-
pled; each has to deal with the language’s complexity. As a result, the same gradual type
system may seem very different when applied to two different languages, an issue that shows
up clearly with object-oriented languages. Siek and Taha’s first effort [19] presented a grad-
ual type system for an object-oriented programing language. It related objects by generaliz-
ing the notion of consistency [18] over structural subtyping. The work had drawbacks, most
notably in the handling of mutable state and aliasing — vital features of object-oriented
languages. Underlying each subsequent gradual type system are different design choices on
how to deal with mutability and aliasing.

The landscape of gradually typed object-oriented languages is rich and includes:
Typed Racket: a rich gradual type system based on contracts.
Gradualtalk: a gradual variant of Smalltalk.
C#: a statically typed language with a dynamic type.
Dart: a class-based language with optional types.
Hack: a statically typed variant of PHP that allows untyped code.
Thorn: a language with both statically typed and untyped code.

© Benjamin Chung, Paley Li, Francesco Zappa Nardelli and Jan Vitek;
licensed under Creative Commons License CC-BY

European Conference on Object Oriented Programming.
Editors: Todd Milstein; Article No. 12; pp. 12:1–12:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.12
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

12:2 Gradual Typing for Objects

TypeScript: JavaScript with optional types.
StrongScript: a variant of TypeScript with nominal types.
Nom: a language supporting dynamic types and nominal typing.
Reticulated Python: a family of gradual type systems for Python.

These languages differ in their type systems and associated run-time enforcement strate-
gies. There are four major approaches, labeled here as optional, concrete, behavioral, and
transient. The optional approach, chosen by TypeScript, Dart, and Hack, amounts to static
type checking followed by type erasure. Erroneous values flowing from dynamically typed
code to statically typed code will not be caught. The concrete approach, used in C# and
Nom, uses run-time subtype tests on type constructors to supplement static typing. While
statically typed code executes at native speed, values are dynamically checked at typed-
untyped boundaries. The behavioral approach of Typed Racket and Gradualtalk monitors
values to ensure that they behave in accordance to their assigned types. Instead of checking
higher-order and mutable values for static type tags like concrete, wrappers ensure enduring
conformance of values to their declared type. The transient approach, specific to Reticulated
Python, lies between concrete and behavioral; it adds type casts but does so only for the top
level of data structures. Finally, Thorn and StrongScript combine the optional and concrete
approaches, differentiating between erased types and run-time-checked types.

Static type systems for object-oriented languages are designed to prevent dynamic “method
not understood” errors. For gradual type systems, however, some method not found errors
cannot be ruled out before execution. In such a gradual type system, untyped code can
pass an ill-typed value to typed code, breaking soundness. The meaning of an “error” for a
gradual type system, therefore, depends on how type specifications are enforced. In other
words, each gradual type system may catch different “errors.” We demonstrate this with
a litmus test consisting of three simple programs capable of distinguishing the four above-
mentioned approaches. The litmus test programs are statically well-typed and “correct”
in the sense that they run to completion without error in an untyped language. However,
when executed under different gradual typing systems, they produce different errors. For
intuition, consider a call, x.m(), where x : C and C has a method m returning a D. In the
concrete approach, this call will succeed. With behavioral, the call will go through, but
an error may be reported if m returns a value of the wrong type. In transient, the call is
similarly guaranteed to go through, but might return the wrong type without reporting an
error. Finally, in optional, the call may get stuck, as x may not have a method named m;
and, if it succeeds, there is no guarantee that type D will be returned.

Surface
language
(gradual)

KafKa
(static)

translations

Concrete
Optional

Transient
Behavioral{ { {

Section 3 Section 5 Section 4

We propose to compare approaches to gradual typ-
ing for objects by translating a gradually typed surface
language to a target language called KafKa. Our sur-
face language is a gradually typed class-based object-
oriented language similar to Featherweight Java. KafKa
is a statically typed class-based object calculus with mu-
table state. The key difference between the two is the
sound type system and casts of KafKa. Where the sur-
face language allows implicit coercions, KafKa requires explicit casts to convert types. Casts
come in two kinds: structural casts check for subtyping, while behavioral casts monitor that
an object behaves as if it was of some type. Translating from surface to target language
involves adding casts, the location and type of which depends on the gradual type system.

This paper makes the following contributions:

The design of a core calculus for gradual type systems for objects.

Chung, Li, Zappa Nardelli, Vitek 12:3

Translations of each gradual approach to the core calculus.
A litmus test comprised of three programs to tell apart the gradual type systems.
Supplementary material includes a mechanized proof of soundness of the type system of
the core calculus and its proof-of-concept implementation on .Net.

Our work does not address the question of performance of the translations. Each of the
semantics for gradual typing has intrinsic performance costs; but these can be mitigated by
compiler and run-time optimizations, which we do not perform. KafKa departs from prior
work (e.g. [11] as KafKa is statically typed. By translating to a statically typed core, we can
clearly see where wrapper-induced dynamic errors can occur. Another design choice is the
use of structural subtyping in KafKa. This is motivated by our desire to represent behavioral
and transient approaches that require structural subtyping. We do not foresee difficulties
either switching to a nominal type system or providing an additional nominal subtype cast.
Code and proofs are available from: github.com/BenChung/GradualComparisonArtifact.

2 Background
“If you know the enemy and know yourself...”

The intellectual lineage of gradual typing can be traced back to attempts to add types to
Smalltalk and LISP. On the Smalltalk side, work on the Strongtalk optional type system [7]
led to Bracha’s notion of pluggable types [6]. In Bracha’s notion of pluggable types, types
exist solely to catch errors at compile-time, never affecting the run-time behavior of pro-
grams. An optional type system is trace preserving: that is to say, if a term e reduces to a,
then adding type annotations to e does not prevent it from reducing to a [17]. This property
is valuable to developers as it ensures that type annotations will not introduce errors; and
thus, adding types does not increase the testing burden! Optional type systems in wide use
include Hack [24], TypeScript [3] and Dart [23].

Felleisen and his students have contributed substantially to gradual typing. The Typed
Scheme [26] design, that later became Typed Racket, is influenced by their earlier work
on higher-order contracts and semantic casts [10, ?]. Typed Racket was envisioned as a
vehicle for teaching programming, being able to explain the source of errors and avoiding
surprises for beginning users were important considerations. For this reason, a value that
flowed in a variable of type t, was required behave as if it belonged to that type throughout
its lifetime. Whenever a higher-order or mutable value crosses a boundary between typed
and untyped code, it is wrapped in a contract that monitors the value’s behavior. If the
value misbehaves, blame can be assigned to the boundary that assigned it the type that was
violated. The granularity of typing is the module, thus a module is either entirely typed or
entirely untyped. Typed Racket’s support for objects was described by Takikawa et al. [22].

Siek and Taha coined the term gradual typing in [18] as “any type system that allows
programmers to control the degree of static checking for a program by choosing to annotate
function parameters with types, or not.” They formalized this idea in the lambda calculus
augmented with references. To make the type system a gradual one, they defined the type
consistency relation t ∼ t′. If t ∼ t′, then t is consistent with t′, and can therefore be
used implicitly where a t′ instance is expected. This enables gradual typing, as ? ∼ t
for every t and vice versa, allowing untyped values to be passed where typed ones are
expected. Siek and Taha extended this idea to an object calculus [19]. In order to do so,
they combined consistency with structural subtyping, producing consistent subtyping. With
consistent subtyping, consistency can be used when checking structural subtyping, allowing
typed objects and untyped objects to be mixed. To explore the design space, Reticulated

ECOOP 2018

github.com/BenChung/GradualComparisonArtifact

12:4 Gradual Typing for Objects

N
om

in
al

O
pt
io
na

l
C
on

cr
et
e

B
eh
av
io
ra
l

C
la
ss

ba
se
d

Fi
rs
t-
cl
as
s
C
la
ss

So
un

dn
es
s
cl
ai
m

U
nb

ox
ed

pr
im

.
Su

bt
yp

e
ca
st

Sh
al
lo
w

su
bt
yp

e
ca
st

B
eh
av
io
ra
l c

as
t

B
la
m
e

Pa
th
ol
og
ie
s

Dart • • • • -
Hack • • • • -

TypeScript • • -
C# • • • •2 • • • -

Thorn • • • • •2 • • -
StrongScript • • • • • •2 • • 1.1x

Nom • • • •2 • • • 1.1x
Gradualtalk •1 • • • • • 5x

Typed Racket • • • • • • • 121x
Reticulated Python

Transient • • • • 10x
Monotonic • • • • 27x

Guarded • • • • • 21x

Figure 1 Gradual type systems. (1) Opt. structural constraints. (2) Typed expressions are sound.

Python [27] was given three modes: the guarded mode behaves as Typed Racket with
contracts applied to values. The transient mode performs shallow subtype checks on reads
and method returns, only validating if the value obtained has matching method types. The
monotonic mode is fundamentally different from any of the previous approaches. Monotonic
cast updates the type of values in place by replacing some of the occurrences of ? with more
specific types, and these updates propagate recursively through the heap until fix-point.

Other noteworthy systems include Gradualtalk [1], C# 4.0 [4], Thorn [5], Nom [14] and
StrongScript [17]. Gradualtalk is a variant of Smalltalk with behavioral casts and mostly
nominal type equivalence (structural equivalence can be specified on demand, but it is
rarely used). It has an optional mode and a mode in which blame can be turned off. C#
4.0 adds the type dynamic to C# and adds dynamically resolved method invocation. Thus
C# has a dynamic sublanguage that allows developers to write unchecked code, working
alongside a sound typed sublanguage in which values are always of their declared type. The
implementation replaces ? by the type object and adds casts where needed. Thorn and
StrongScript extend the C# approach with the addition of optional types (called like types
in Thorn). Thorn is implemented by translation to the JVM. StrongScript is implemented
on top of a modified version of the V8 VM. The presence of concrete types means that the
compiler can optimize code (unbox data and in-line methods) and programmers are ensured
that type errors will not occur within concretely typed code. Nom is similar to Thorn in
that it is nominal and follows the concrete approach.

Fig. 1 reviews gradual type systems for objects. All languages are class-based, except
TypeScript which has both classes and JavaScript objects. While that choice is not crucial;
classes are useful as a source of type declarations. Most languages build subtyping on explicit
subtype declarations, nominal typing, rather than on structural similarities. TypeScript uses
structural subtyping but does not implement a run-time check for it. Anecdotal evidence
suggests that TypeScript could switch to nominal subtyping with little effort, as was done for
StrongScript [17]. While nominal subtyping leads to more efficient type casts, Reticulated
Python’s subtype consistency relation is fundamentally structural; it would be nonsensical

Chung, Li, Zappa Nardelli, Vitek 12:5

to use it in a nominal system. For Racket, the heavy use of first-class classes and class
generation naturally leads to structural subtyping as many of the classes being manipulated
have no names and arise during computation.

The optional approach is the default for Dart, Hack, and TypeScript. Transient Reticu-
lated Python allows any value to flow in a field, regardless of type annotations, leading to its
“open world” soundness guarantee [27]. Some languages like Dart and Gradualtalk can op-
erate in a checked and an uncheck mode. In Thorn, Nom, and C#, primitives are concretely
typed; they can be unboxed without tagging. The choice of casts follows from other design
decisions. The concrete approach naturally tends to use subtype tests to establish the type
of values. For nominal systems, there are highly optimized algorithms. Shallow casts are
casts that only check the presence of methods but not their signature. They are used by
Racket and Reticulated Python to ensure some basic form of type conformance. Behavioral
casts are used when information, such as a type or a blame label, must be associated with
a reference or an object.

Blame assignment is a topic of investigation in its own right. Anecdotal evidence suggests
that the context provided by blame helps developers pinpoint the provenance of errors. In
the same way that a Java stack trace identifies the function that went wrong, blame identifies
where a type assertion came from. This is especially important in behavioural gradual type
systems, as type assertions become wrappers which can propagate through the heap. Blame
identifies where a failing wrapper came from, a task that would otherwise require extensive
backtracking debugging. Unlike stack traces, which have little run-time cost, blame tracking
has a cost due to its meta-data. Blame information has to be stored whenever a wrapper is
applied and is believed to cause substantial slowdowns. However, this has not been measured
in detail. With the concrete approach, blame is trivially available as evaluation stops at the
boundary that causes the failure [14]. We are primarily concerned with where the error
arises, rather than what information is reported; thus, we do not consider blame further.

The last column of Fig. 1 lists self-reported performance pathologies. These numbers are
not comparable, as they refer to different programs and different configurations of type anno-
tations. They are not worst case scenarios either; most languages lack a sufficient corpus of
code to conduct a thorough evaluation. Nevertheless, one can observe that for optional types
no overhead is expected, as the type annotations are erased during compilation. Concrete
types insert efficient casts and lead to code that can be optimized. The performance of the
transient semantics for Reticulated Python is a worst case scenario for concrete types—i.e,
there is a cast at almost every call. Finally, languages with behavioral casts are prone to
significant slowdowns. Compiler optimizations for reducing these overheads are an active
research topic [2, 16]. Languages such as C#, Nom, Thorn, and StrongScript are designed
so that the performance of fully typed code is better than untyped code, so that mixed code
performs well thanks to the relatively inexpensive nominal subtype tests.

In contemporary work, Greenman and Felleisen describe three approaches to migratory
typing in the context of a lambda calculus extended with pairs and primitive values [11].
Their natural embedding corresponds to the behavioral approach, the erasure embedding
is the optional approach, and the locally-defensive embeddeding is transient. They do not
consider the concrete approach—neither objects or mutable state. They give performance
results for a non-optimizing implementation of the embeddedings, and the results are as
expected: behavioral has extreme worst cases and transient significantly slows down fully-
typed programs. While they do not evalute object-oriented programs, these are unlikely to
fare better. Our work differs in that we are trying to express a translation between object
calculi using features that are readily available in most virtual machines.

ECOOP 2018

12:6 Gradual Typing for Objects

3 A Family of Gradually Typed Languages and their Litmus Test
“There is no perfection only life”

There is no single, common notion of what constitutes an erroneous gradually typed program—
a consequence of the varied enforcement strategies. The choice of enforcement strategy is
reflected in the semantics of the language which, in turn, implies that developers have to
understand the details of that strategy to avoid run-time errors. This also means that it is
possible to differentiate between approaches by simply observing the run-time errors that
each type system produces. We propose a litmus test consisting of three programs whose
execution depends on which gradual type system is in use. Each of these programs is stat-
ically well-typed and runs without error when executed with a purely dynamic semantics.
However, this varies as we use different semantics for gradual typing. We start by presenting
a common surface language in which we can express our programs, and then explain why
the various approaches to gradual typing yield different run-time errors.

3.1 A Common Surface Language
To normalize our presentation, we use a single surface language for all four of the gradual
type systems under study. The surface language is a gradually typed object calculus without
inheritance, method overloading or explicit type cast operations. Fig. 2 gives its syntax and
an extract of its static semantics. The distinctive feature of the calculus is the presence of
type ? — the dynamic type. A variable of type ? can hold any value, an invocation of a
method with receiver of type ? is always statically well-typed, and an expression of type ?
can appear anywhere within a typed program.

This dynamic type lets us convert our otherwise statically typed language to a gradually
typed one. If a well-typed program does not use ?, then it will not get stuck on method
invocation. A program where all variables are annotated as ? is fully dynamic, and any
given invocation may get stuck. Gradual typing comes into play when an expression of
type ? occurs as an argument to a method that expects some other type C and conversely
when an argument of type C is passed to a method that expects ?. The static type system
of the surface language allows such implicit coercions – using the convertibility relation –
but run-time checks may be inserted to catch potential type mismatches. We formalize the
semantics of this system later; here, we appeal to the readers’ intuition.

Before presenting the litmus tests, some details about the type system of the surface
language may prove helpful. The subtyping relation is structural with the Amber rule [8] to
enable recursion. M K ` C <: D holds if class C has (at least) all the methods of class D and
the arguments and return types are related by subtyping in the usual contra- and co-variant
way; the class table K holds definitions of all classes, and M is a helper for recursion that
records the subtype relations encountered so far. One noteworthy feature of subtyping is
that the fields of objects do not play a role in deciding if classes are subtypes. Following
languages like Smalltalk, fields are encapsulated and can only be accessed from within their
defining object. Syntactically, field reads and writes are limited to the self-reference this.

The static type checking rules, Γ K s̀ e : t where Γ is a type environment and K is a
class table, are standard with two exceptions: method invocation and convertibility. Method
invocation is always allowed when the receiver e is of type ?; therefore, e.m(e′) has type ? if
the argument can have type ?. Convertibility is used when statically typed and dynamically
typed terms interact. The convertibility relation, written K s̀ t Z⇒ t′, states that type t is
convertible to type t′ in class table K. It is used both for up-casting and for conversions
of ? to non-? types. K s̀ t Z⇒ t′ holds when t <: t′, this allows up-casts. The remaining

Chung, Li, Zappa Nardelli, Vitek 12:7

Syntax:

k ::= class C { fd1.. md1.. } md ::= m(x : t) : t {e} fd ::= f : t t ::= ? | C

K ::= k K | · Γ ::= x : t Γ | · M ::= C <: D M | ·

e ::= x | this | this.f | this.f = e | e.m(e) | new C(e1..)

Typing expressions:

Γ(x) = t
Γ K s̀ x : t

Γ(this) = C
f : t ∈ K(C)

Γ K s̀ this.f : t

Γ(this) = C f : t ∈ K(C)
Γ K s̀ e : t′ K s̀ t′ Z⇒ t

Γ K s̀ this.f = e : t

Γ K s̀ e : ?
Γ K s̀ e′ : t

Γ K s̀ e.m(e′) : ?

Γ K s̀ e : C Γ K s̀ e′ : t
m(t1) : t2 ∈ K(C) K s̀ t Z⇒ t1

Γ K s̀ e.m(e′) : t2

f1 : t1.. ∈ K(C)
Γ K s̀ e1 : t′

1.. K s̀ t′
1 Z⇒ t1..

Γ K s̀ new C(e1..) : C

Convertibility:

· K s̀ t <: t′

K s̀ t Z⇒ t′ K s̀ t Z⇒ ? K s̀ ? Z⇒ t

Subtyping:

M K ` ? <: ?
C <: D ∈ M

M K ` C <: D

M′ = C <: D M
md ∈ K(D) =⇒ md′ ∈ K(C) . M′ K ` md <: md′

M K ` C <: D

M K ` t′
1 <: t1 M K ` t2 <: t′

2

M K ` m(x : t1) : t2 {e} <: m(x : t′
1) : t′

2 {e′}

Figure 2 Surface language syntax and type system (extract).

two rules allow implicit conversion to and from the dynamic type. To avoid collapsing the
type hierarchy, convertibility is not transitive. It is through convertibility that our surface
language becomes gradual.

3.2 Litmus

Using three different programs, we can differentiate between four gradual type systems.
The litmus test is shown in Fig. 3 and its constituent programs are written in our surface
language. Each of these programs consists of a class table and an expression whose evaluation
in the context of the class table determines if the litmus test succeeds or fails.

The programs are designed to induce errors. This is done by arranging for values to cross
typed/untyped boundaries in a way that will cause some type systems to report an error
but not others. At heart, these programs can be summarized by the type boundaries that
are crossed by an object. The notation C | t denotes an object of class C passing through a
boundary that expects it to be of type t. For example, if method m expects an argument of

ECOOP 2018

12:8 Gradual Typing for Objects

type t, a method call e.m(e′) would induce the boundary e′ | t. In program L1, we have:

A | ? | I
An instance of class A is first implicitly converted to ? and then to I; in this program classes
A and I are unrelated by subtyping. In L2, the same sequence of conversions is applied:

A | ? | I
This time A and I both have a method m, but the methods have incompatible argument
types. Lastly, in L3 we start by converting a C to ? and then to E and finally back to ?:

C | ? | E | ?
The resulting value is then used to call method m with an argument of class C. This correct
as method m in C does expect an argument of that type. If the object was an instance of E
instead, the call would not be legal because E’s method m expects a class D as argument.
We will use this litmus test to differentiate between four different gradual type systems:

Optional. An optional gradual type system simply erases all of the type annotations at
run-time; all three programs run to completion without error.

Concrete. The concrete approach ensures that a variable of some class C always refers to
an object of that class or of a subtype of it. To ensure this is the case, all implicit conversions
imply a run-time subtype check. This causes all three programs to fail. L1 and L2 fail on
a subtype test K ` A <: I. L3 fails on the subtype test K ` C <: E.

Behavioral. The behavioral approach allows conversion from ? to C if the value is compat-
ible to C and if, after that, it behaves as if it was an instance of C. The former is checked by
a shallow cast that only looks at method names, and the latter by a wrapper that monitors
further interactions. L1 fails at because A does not have the method n expected by I. L2,
however, executes without error because A has the method m expected by I. L3 fails, since
the instance of C has been applied a wrapper for E. When method a is called with a C, the
wrapper notices that E’s method a expects a D and that C and D are not compatible.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

1:18 • Anon.

class A {
m(x:A):A {this}}

class I {
n(x:I):I {this}}

class T {
s(x:I):T {this}
t(x:*):* {this.s(x)}}

new T().t(new A())

class A {
m(x:A):A {this}}

class Q {
n(x:Q):Q {this}}

class I {
m(x:Q):I {this}}

class T {
s(x:I):T {this}
t(x:*):* {this.s(x)}}

new T().t(new A())

class C {
m(x:C):C {x}}

class D {
n(x:D):D {x}}

class E {
m(x:D):D {x}}

class F {
m(x:E):E {x}
n(x:*):* {this.m(x)}}

new F().n(new C())
.m(new C())

(Litmus test 1) (Litmus test 2) (Litmus test 3)

L1 L2 L3
Thorn

Typed Racket X
Transient RetPy X X

TypeScript X X X

Fig. 20. Semantic litmus tests.

In Typed Racket, any call to method m of class F, encounters a wrapper that ensures that the argument and
return type of m is always a D. Therefore, if the method m is called with a C, the program would get stuck at the
cast to D. In Transient, the cast to E is a no-op, so when we call m with C, no extra cast to D is encountered. The
Transient design allows method m, which expects an instance of class C as argument, to be called with a value of
type ? at any point. However, this forces m to check its arguments at every method invocation.

5 GRADUAL TYPE SYSTEM SHOOTOUT & CONCLUSIONS

“There is no perfection only life.”

Gradual typing has matured beyond being an experimental language feature in the petri dish of academia.
Applications are now being written that incorporate gradual types. However the proposed language designs have
subtle semantics and di�er in their dark corners. It is the responsibility of language researchers to paint a clear
picture of each approach to gradual typing.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

1:18 • Anon.

class A {
m(x:A):A {this}}

class I {
n(x:I):I {this}}

class T {
s(x:I):T {this}
t(x:*):* {this.s(x)}}

new T().t(new A())

class A {
m(x:A):A {this}}

class Q {
m(x:Q):Q {this}}

class I {
m(x:Q):I {this}}

class T {
s(x:I):T {this}
t(x:*):* {this.s(x)}}

new T().t(new A())

class C {
m(x:C):C {x}}

class D {
n(x:D):D {x}}

class E {
m(x:D):D {x}}

class F {
m(x:E):E {x}
n(x:*):* {this.m(x)}}

new F().n(new C())
.m(new C())

(Litmus test 1) (Litmus test 2) (Litmus test 3)

L1 L2 L3
Thorn X

Typed Racket X
Transient RetPy X X

TypeScript X X X

Fig. 20. Semantic litmus tests.

The example presents two mutually incompatible classes C and D, along two potential consumers for C and
D, C itself and E, and a conversion class F. F is used to acquire a reference to C as an E, which implies that the
method m of C has type D to D, despite it actually having type C to C, even with the possibility to call method m
through untyped code.

In Typed Racket, any call to method m of class F, encounters a wrapper that ensures that the argument and
return type of m is always a D. Therefore, if the method m is called with a C, the program would get stuck at the
cast to D. In Transient, the cast to E is a no-op, so when we call m with C, no extra cast to D is encountered. The
Transient design allows method m, which expects an instance of class C as argument, to be called with a value of
type ? at any point. However, this forces m to check its arguments at every method invocation.

5 GRADUAL TYPE SYSTEM SHOOTOUT

“There is no perfection only life.”

One takeaway from our work is that there is no single approach to gradual typing, and that the di�erent choices
are observationally distinct. To illustrate this, Fig. 20 presents three small programs that can easily di�erentiate
between the four gradual typing approaches that we describe. Each of the litmus tests consists of a class table and
a main expression, as is typical of KafKa programs, and behaves di�erently depending on the gradual semantics
chosen.

, Vol. 1, No. 1, Article 1. Publication date: April 2017.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

1:18 • Anon.

class A {
m(x:A):A {this}}

class I {
n(x:I):I {this}}

class T {
s(x:I):T {this}
t(x:*):* {this.s(x)}}

new T().t(new A())

class A {
m(x:A):A {this}}

class Q {
m(x:Q):Q {this}}

class I {
m(x:Q):I {this}}

class T {
s(x:I):T {this}
t(x:*):* {this.s(x)}}

new T().t(new A())

class C {
m(x:C):C {x}}

class D {
n(x:D):D {x}}

class E {
m(x:D):D {x}}

class F {
m(x:E):E {x}
n(x:*):* {this.m(x)}}

new F().n(new C())
.m(new C())

(Litmus test 1) (Litmus test 2) (Litmus test 3)

L1 L2 L3
Thorn X

Typed Racket X
Transient RetPy X X

TypeScript X X X

Fig. 20. Semantic litmus tests.

The example presents two mutually incompatible classes C and D, along two potential consumers for C and
D, C itself and E, and a conversion class F. F is used to acquire a reference to C as an E, which implies that the
method m of C has type D to D, despite it actually having type C to C, even with the possibility to call method m
through untyped code.

In Typed Racket, any call to method m of class F, encounters a wrapper that ensures that the argument and
return type of m is always a D. Therefore, if the method m is called with a C, the program would get stuck at the
cast to D. In Transient, the cast to E is a no-op, so when we call m with C, no extra cast to D is encountered. The
Transient design allows method m, which expects an instance of class C as argument, to be called with a value of
type ? at any point. However, this forces m to check its arguments at every method invocation.

5 GRADUAL TYPE SYSTEM SHOOTOUT

“There is no perfection only life.”

One takeaway from our work is that there is no single approach to gradual typing, and that the di�erent choices
are observationally distinct. To illustrate this, Fig. 20 presents three small programs that can easily di�erentiate
between the four gradual typing approaches that we describe. Each of the litmus tests consists of a class table and
a main expression, as is typical of KafKa programs, and behaves di�erently depending on the gradual semantics
chosen.

, Vol. 1, No. 1, Article 1. Publication date: April 2017.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

1:18 • Anon.

class A {
m(x:A):A {this}}

class I {
n(x:I):I {this}}

class T {
s(x:I):T {this}
t(x:*):* {this.s(x)}}

new T().t(new A())

class A {
m(x:A):A {this}}

class Q {
m(x:Q):Q {this}}

class I {
m(x:Q):I {this}}

class T {
s(x:I):T {this}
t(x:*):* {this.s(x)}}

new T().t(new A())

class C {
m(x:C):C {x}}

class D {
n(x:D):D {x}}

class E {
m(x:D):D {x}}

class F {
m(x:E):E {x}
n(x:*):* {this.m(x)}}

new F().n(new C())
.m(new C())

(Litmus test 1) (Litmus test 2) (Litmus test 3)

L1 L2 L3
Thorn X

Typed Racket X
Transient RetPy X X

TypeScript X X X

Fig. 20. Semantic litmus tests.

The example presents two mutually incompatible classes C and D, along two potential consumers for C and
D, C itself and E, and a conversion class F. F is used to acquire a reference to C as an E, which implies that the
method m of C has type D to D, despite it actually having type C to C, even with the possibility to call method m
through untyped code.

In Typed Racket, any call to method m of class F, encounters a wrapper that ensures that the argument and
return type of m is always a D. Therefore, if the method m is called with a C, the program would get stuck at the
cast to D. In Transient, the cast to E is a no-op, so when we call m with C, no extra cast to D is encountered. The
Transient design allows method m, which expects an instance of class C as argument, to be called with a value of
type ? at any point. However, this forces m to check its arguments at every method invocation.

5 GRADUAL TYPE SYSTEM SHOOTOUT

“There is no perfection only life.”

One takeaway from our work is that there is no single approach to gradual typing, and that the di�erent choices
are observationally distinct. To illustrate this, Fig. 20 presents three small programs that can easily di�erentiate
between the four gradual typing approaches that we describe. Each of the litmus tests consists of a class table and
a main expression, as is typical of KafKa programs, and behaves di�erently depending on the gradual semantics
chosen.

, Vol. 1, No. 1, Article 1. Publication date: April 2017.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

1:18 • Anon.

class A {
m(x:A):A {this}}

class I {
n(x:I):I {this}}

class T {
s(x:I):T {this}
t(x:*):* {this.s(x)}}

new T().t(new A())

class A {
m(x:A):A {this}}

class Q {
m(x:Q):Q {this}}

class I {
m(x:Q):I {this}}

class T {
s(x:I):T {this}
t(x:*):* {this.s(x)}}

new T().t(new A())

class C {
m(x:C):C {x}}

class D {
n(x:D):D {x}}

class E {
m(x:D):D {x}}

class F {
m(x:E):E {x}
n(x:*):* {this.m(x)}}

new F().n(new C())
.m(new C())

(Litmus test 1) (Litmus test 2) (Litmus test 3)

L1 L2 L3
Thorn X

Typed Racket X
Transient RetPy X X

TypeScript X X X

Fig. 20. Semantic litmus tests.

The example presents two mutually incompatible classes C and D, along two potential consumers for C and
D, C itself and E, and a conversion class F. F is used to acquire a reference to C as an E, which implies that the
method m of C has type D to D, despite it actually having type C to C, even with the possibility to call method m
through untyped code.

In Typed Racket, any call to method m of class F, encounters a wrapper that ensures that the argument and
return type of m is always a D. Therefore, if the method m is called with a C, the program would get stuck at the
cast to D. In Transient, the cast to E is a no-op, so when we call m with C, no extra cast to D is encountered. The
Transient design allows method m, which expects an instance of class C as argument, to be called with a value of
type ? at any point. However, this forces m to check its arguments at every method invocation.

5 GRADUAL TYPE SYSTEM SHOOTOUT

“There is no perfection only life.”

One takeaway from our work is that there is no single approach to gradual typing, and that the di�erent choices
are observationally distinct. To illustrate this, Fig. 20 presents three small programs that can easily di�erentiate
between the four gradual typing approaches that we describe. Each of the litmus tests consists of a class table and
a main expression, as is typical of KafKa programs, and behaves di�erently depending on the gradual semantics
chosen.

, Vol. 1, No. 1, Article 1. Publication date: April 2017.

L1

L2 L3

Fig. 21. Gradual typing semantic litmus tests.

In this paper we have compared
the essence of four gradual type
system designs, namely Type-
script, Thorn, Typed Racket,
and Transient Python. Our for-
malization have shown that

, Vol. 1, No. 1, Article 1. Publication date: June 2017.

L1

L2 L31

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1:20 Anon.

class A {

m(x:A):A {this}}

class I {

n(x:I):I {this}}

class T {

s(x:I):T {this}

t(x:*):* {this.s(x)}}

new T().t(new A())

class A {

m(x:A):A {this}}

class Q {

n(x:Q):Q {this}}

class I {

m(x:Q):I {this}}

class T {

s(x:I):T {this}

t(x:*):* {this.s(x)}}

new T().t(new A())

class C {

a(x:C):C {x}}

class D {

b(x:D):D {x}}

class E {

a(x:D):D {x}}

class F {

m(x:E):E {x}

n(x:*):* {this.m(x)}}

new F().n(new C())

.a(new C())

(Litmus test 1) (Litmus test 2) (Litmus test 3)

L1 L2 L3
Thorn

Typed Racket X
Transient RetPy X X

TypeScript X X X

Fig. 21. Semantic litmus tests.

The example presents two mutually incompatible classes C and D, along two potential consumers
for C and D, C itself and E, and a conversion class F. F is used to acquire a reference to C as an E,
which implies that the method m of C has type D to D, despite it actually having type C to C, even
with the possibility to call method m through untyped code.

In Typed Racket, any call to method m of class F, encounters a wrapper that ensures that the
argument and return type of m is always a D. Therefore, if the method m is called with a C, the
program would get stuck at the cast to D. In Transient, the cast to E is a no-op, so when we call m
with C, no extra cast to D is encountered. The Transient design allows method m, which expects
an instance of class C as argument, to be called with a value of type ? at any point. However, this
forces m to check its arguments at every method invocation.

6 CONCLUSIONS

“There is no perfection only life.”

Another open question for gradual type system designers is performance of the resulting imple-
mentation. On the one hand, type annotations are a source of information about programmer intent
that could be used to generate e�cient code. On the other hand, without soundness guarantees this
information cannot be relied upon and becomes, at best, hints that can be used in heuristic-driven

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

Concrete
Behavioral
Transient
Optional

Figure 3 Litmus test. Each program consists of a class table (top) and an expression (bottom).
Top left table indicates successful executions.

Chung, Li, Zappa Nardelli, Vitek 12:9

Transient. The transient approach is weaker than behavioral. It retains the shallow
structural checks at casts of the behavioral approach, but does not wrap values. Transient
fails L1, for the same reason as the other two type systems, and passes L2, for the same
reason as behavioral. L3 succeeds because transient forgets that the C object was cast to E.

3.3 Discussion
These tests capture the behavior of implementations. The three have been expressed in
TypeScript (optional), StrongScript (concrete), Typed Racket (behavioral) and Reticulated
Python (transient), with the same errors.1 What the litmus tests show is that a precise
understanding of the semantics of gradually typed languages, and their run-time enforcement
machinery, is crucial for developers to know if a program is “correct.” Here, all errors are
false positives, since none of these programs performs an invalid operation. This underlines
the fact that in gradually typed language, type specifications can lead to run-time errors
just as faulty code can. Thus, type annotations must be audited and tested just like code.

These approaches induce usability trade-offs. One way to contextualize this is with
the gradual guarantee of Siek et al [20]. Informally, it states that if there exists a static
type assignment to an untyped program that allows the program to run to completion,
any partial assignment of those types will do too. The optional approach trivially fulfills
this guarantee. Transient likewise satisfies the gradual guarantee [28], as it only checks
top-level structure of values at type boundaries. Unlike optional, transient does ensure
that typed calls succeed; however, a call may produce a dynamic error if the receiver is
of the wrong type (even in a typed context), or the return is an ill-typed value. The
behavioral approach also fulfills the guarantee, as it only checks arguments and return types
when wrappers are invoked. However, typed function calls can fail if they call an untyped
function that returns the wrong value. Finally, the concrete approach ensures that every
typed call is successful. However, this comes at the expense of the gradual guarantee —
partially typed classes are not compatible with more-or-less typed ones. The guarantee is
incompatible with subtyping. Suppose a program were to rely on the judgment {m(C) :
D} <: {m(C) : D}. Relaxing the argument type to a dynamic type, {m(?) : D} <: {m(C) :
D}, violates subtyping. To overcome this, Reticulated Python augments subtyping with the
aforementioned consistency relation. This increases the number of programs accepted by the
static type system. However, it is not used by the run-time semantics and is fundamentally
incompatible with the concrete approach (because any use of consistent subtyping will fail).
We omit consistent subtyping.

As an alternative consider the approaches taken by Thorn or StrongScript. They have
three kinds of types: ? (dynamic), C (concrete), and like C (optional), combining the concrete
and optional approach into the same language. This design allows for a different kind of
migration; once a program is fully annotated with optional types, they all can be converted
to concrete types without introducing any run-time errors [17]. We do not model this
combination directly, as the underlying details are no different from the concrete approach.

The motivation for making fields private is to simplify the system. With private fields,
errors are limited to method invocation. Field accesses can be trivially checked; as they are
always accessing this. Moreover, interposing on method invocation can easily be achieved by
wrappers, whereas interposing on field access would require modifying the code of clients.
This would make the formal development more cumbersome without adding insight.

1 github.com/BenChung/GradualComparisonArtifact/examples

ECOOP 2018

github.com/BenChung/GradualComparisonArtifact/examples

12:10 Gradual Typing for Objects

4 KafKa: A Core Calculus
“Aux chenilles du monde entier et aux papillons qu’elles renferment”

Even without gradual typing, comparing languages is difficult. Small differences in syntax
and features can make even the most similar languages appear different. As a result, the
nuances of gradual type systems are often hidden amongst irrelevant details. To enable direct
comparison, we propose to translate gradually typed languages down to a common calculus
designed to highlight the distinctions between designs. The target for this translation is our
core language, KafKa. KafKa is a statically typed language similar to the surface language
but with several features added to enable its use as a common target language.

These additions make an explicit distinction between static and dynamic operations and
replace implicit conversions with explicit casts. KafKa’s first additions consist of two casts
which are used at boundaries between typed and untyped code. The structural subtype
cast, written 〈t〉 e, ensures that expression e evaluates to a subtype of t. The behavioral
cast, written J tI e, creates a wrapper around the value of e that monitors e to ensure that
it behaves as if it was of type t. Additionally, a syntactic distinction is made between static
method invocation, written e.mt�t′(e′), dynamic method invocation, e@m?�?(e′). Static
invocations does not get stuck, whereas dynamic invocations can. This makes explicit which
function calls can fail.

KafKa was designed to align with common statically-typed class-based object-oriented
compilation targets like .NET or the JVM. It maps to the intermediate language supported
by these platforms. KafKa also requires the ability to generate new classes at run-time, a
feature supported by these environments but typically not present in class-based calculi.

4.1 Syntax and Semantics
We had two requirements when designing KafKa: first, to be expressive enough to capture
the dynamic semantics implied by each gradual type system; second, to have a type system
that can express when code is known to be error free. KafKa’s syntax and semantics, loosely
inspired by Featherweight Java [12], are shown in Fig. 4. At the top level, classes are notated
as class C { fd1.. md1.. }; methods, ranged over by md, are denoted as m(x : t) : t {e}; and
fields f : t. Expressions consist of:

variables, x;
the self-reference this; and wrapper target, that;
field accesses, this.f, and field writes, this.f = e;
object creation, new C(e1..);
static and dynamic method invocations;
subtype and behavioral casts;
and heap addresses.

The static semantics holds only a few surprises; key typing rules appear in Fig. 4. The
subtyping relation is inherited from the surface language. The program typing relation (not
shown here), e K X, indicates that expression e is well-formed with respect to class table
K. The expression typing judgment Γ Σ K ` e : t, indicates that against Γ with heap typing
Σ and class table K, e has type t. Unlike the surface language, KafKa does not rely on a
convertibility relation from ? to C and back; instead, explicit casts are required.

Evaluation is mostly standard with an evaluation context consisting of a class table K,
the expression being evaluated e, and a heap σ mapping from addresses a to objects, denoted
C{a . . .}. Due to the need for dynamic code generation, the class table is part of the state.

Chung, Li, Zappa Nardelli, Vitek 12:11

Syntax:

e ::= x | this | that |
this.f | this.f = e | new C(e1..) |
e.mt�t(e) | e@m?�?(e) |
〈t〉 e | J tI e |
a | a.f | a.f = e

k ::= class C { fd1.. md1.. }
md ::= m(x : t) : t {e}
fd ::= f : t
t ::= ? | C
K ::= k K | ·
Σ ::= a : t Σ | ·

Static semantics:

Γ Σ K ` e : C m(t) : t′ ∈ K(C) Γ Σ K ` e′ : t
Γ Σ K ` e.mt�t′ (e′) : t′

Γ Σ K ` e : ? Γ Σ K ` e′ : ?
Γ Σ K ` e@m?�?(e′) : ?

Γ Σ K ` e : t′

Γ Σ K ` 〈t〉 e : t
Γ Σ K ` e : t′

Γ Σ K `J tI e : t
Σ(a) = C

Γ Σ K ` a : C Γ Σ K ` a : ?

Execution contexts:

E ::= a.f = E | E.mt�t(e) | a.mt�t(E) | E@m?�?(e) |
a@m?�?(E) | 〈t〉E | J tI E | new C(a1..E e1..) | �

Dynamic semantics:

K new C(a1..) σ → K a′ σ′ where a′ fresh σ′= σ[a′ 7→ C{a1..}]
K a.fi σ → K ai σ where σ(a) = C{a1, . . . ai, an . . .}
K a.fi = a′ σ → K a′ σ′ where σ(a) = C{a1, . . . ai, an . . .}

σ′= σ[a 7→ C{a1, . . . a′, an . . .}]
K a.mt�t′ (a′) σ → K e′ σ where e′ = [a/this a′/x]e

m(x : t1) : t2 {e} ∈ K(C)
σ(a) = C{a1..} ∅ K ` t <: t1

∅ K ` t2 <: t′

K a@m?�?(a′) σ → K e′ σ where e′ = [a/this a′/x]e
m(x : ?) : ? {e} ∈ K(C)
σ(a) = C{a1..}

K 〈?〉 a σ → K a σ

K 〈D〉 a σ → K a σ where ∅ K ` C <: D σ(a) = C{a1..}
K J tI a σ → K′ a′ σ′ where K′ a′ σ′ = bcast(a, t, σ,K)
K E[e] σ → K′ E[e′]σ′ where K e σ → K′ e′ σ′

Figure 4 KafKa dynamic semantics and static semantics (extract).

4.1.1 Method Invocation

KafKa has two invocation forms, the dynamic e@m?�?(e′) and the static e.mt�t′(e′), both
denoting a call to method m with argument e′. There are several design issues worth
discussing. First, as our calculus is a translation target, it is acceptable to require some
explicit preparation for objects to be used in a dynamic context. A dynamic call is only
successful if the receiver has a method of the expected name and with argument and return
types of ?. This is a design choice of KafKa, even dynamic invocation has to be well-typed

ECOOP 2018

12:12 Gradual Typing for Objects

(even if this typing is trivial). Secondly, it is possible for a static invocation to call an
untyped method (of type ? to ?). Consider the following class definition

class C {
m(x : Int) : Int { x + 2 }
m (x: ?) : ? { 〈?〉 this.mInt�Int(〈Int〉 x) }

}

assume that class table K holds a definition for Int, and that we have integer constants and
addition. The class demonstrates several features of KafKa. Its class well-formedness rules
(not shown here) allow a limited form of method overloading. A class may have at most two
occurrences of any method m: one “untyped” with ? as argument and return type; and one,
which we call “typed”, where either its argument or return type differ from ?. The static
type system enforces a single means of invoking a typed method m:

new C().mInt�Int(2)

Here, the receiver is obviously of type C and the argument is Int; thus, the call is statically
well-typed. The expression will therefore evaluate the body of m. For an untyped method,
there are two invocation modes:

new C()@m?�?(2)

The call executes correctly here, as C has an untyped m. However, in the general case, there
is no guarantee that the receiver of an untyped invocation has the requested method; and
therefore, a dynamic invocation can get stuck. The receiver of a dynamic invocation has
type ?. When the receiver type is known to be some C and that class has the requested
method, then the static invocation can be used:

new C().m?�?(2)

The invocation will succeed. All nuances of invocation will come in handy when translating
the surface language to KafKa.

4.1.2 Run-time Casts
KafKa has two cast operations: the structural subtype cast 〈t〉 e and the behavioral cast
J tI e, both indicating the desire for the result of evaluating e to be of type t. Where the
casts differ is what is meant by “has type t”. The subtype cast checks that the result of
evaluating e is an object whose class is compatible with t. If t is a class, then it will check for
a subtyping relation; otherwise, if t = ?, the cast will succeeds. As every value in the heap
is tagged by its type constructor, it is always possible to perform this check. The behavioral
cast is more complex; we will describe it in the remainder of this section.

The objective of the behavioral cast is to ensure that the wrapped object behaves as the
target type dictates. When given the address a of some object, this cast creates a wrapper
object, say a′, that enforces the invariant that a behaves as a value of type t. Function
bcast(a, t, σ,K) = K′ a′ σ′ specifies its semantics, shown in Fig. 5. There are two cases to
consider: either the target type is a class C′, or it is ?.

If the target type is C′, then bcast(a,C′, σ,K) will return an updated class table K′,
a reference to the wrapped object a′, and an updated heap σ′. As long as a has every
method name specified by C′, the cast itself will succeed. If a is missing a method, it is
impossible for a to implement C′ correctly, and early failure is indicated. Otherwise, the

Chung, Li, Zappa Nardelli, Vitek 12:13

Behavioral cast: bcast(a, t, σ,K) = K′ a′ σ′

a Reference to wrap a′ Wrapped reference
t Target type to enforce K′ Class table with wrapper
σ Original heap σ′ New heap
K Original class table

bcast(a,C′, σ,K) = K′ a′ σ′ where


σ(a) = C{a1..} D, a′ fresh σ′ = σ[a′ 7→ D{a}]
md1.. ∈ K(C) names(md′

1..) ⊆ names(md1..)
md′

1.. ∈ K(C′) nodups(md1..) nodups(md′
1..)

K′ = K W(C,md1..,md′
1..,D)

bcast(a, ?, σ,K) = K′ a′ σ′ where


σ(a) = C{a1..} md1.. ∈ K(C) D, a′ fresh
nodups(md1..) K′ = K W? (C,md1..,D)
σ′ = σ[a′ 7→ D{a}]

W(C,md1..,md′
1..,D) = class D { that : C md′′

1 .. }
where m(x : t1) : t2 {e} ∈ md1..

md′′
1 = m(x : t′

1) : t′
2 { J t′

2I this.that.mt1�t2 (J t′
1I x)} ..

if m(x : t′
1) : t′

2 {e′} ∈ md′
1..

m(x : t1) : t2 { this.that.mt1�t2 (x)} ..
otherwise

W? (C,md1..,D) = class D { that : C md′
1.. }

where md′
1 = m(x : ?) : ? { J?I this.that.mt�t′ (J tI x)} ..

if m(x : t) : t′ {e} ∈ md1..

Figure 5 Behavioral cast semantics.

metafunction continues to generate a type wrapper. Class generation itself is delegated to
the W metafunction. A W invocation, W(C,md1..,md′

1..,D), takes a class C, a fresh name
D, and two method lists md1.. and md′

1, respectively the method of C and the methods of
the type to enforce. The class generated by W will have adapter methods for each method
m occurring in both md1.. and md′

1... Type mismatches between the wrapped object and
the wrapping type are resolved with more behavioral casts. For methods that do not need
to be adapted (methods only in md1..), a simple pass-through method is generated. This
method simply calls the wrapped object; itself referred to by the distinguished variable that.

If the target type is ?, the wrapper class is simpler. It only needs to check that method
arguments match the types expected by the wrapped object. This is done by another
behavioral cast. Return values are cast to ?.

For example, consider the following program which has two classes C and D. Even
though C and D both have method a, they are not subtypes because the arguments to their
m implementations are not related.

(JCI (JDI new C())).b(2) where K = class C {

ECOOP 2018

12:14 Gradual Typing for Objects

m(x : ?) : ? { x }
n(x : ?) : ? { x }

}
class D { m(x : Int) : Int { x } }

The program starts with a C, casts it to D, and then back to C. The reason we generate pass-
through methods (the wrapper that enforces type D has a method n) is that without them,
the method n would be “lost”. Without the pass-through method, it would be impossible
to cast back to C, as the wrapper would only have an implementation for m. Wrappers
with this semantics are referred to as opaque, as it is not possible to see methods of the
underlying object though them. In contrast, KafKa uses transparent wrappers. To illustrate
what this looks like, the following class E is generated by the cast from C to D:

class E {
that : C
m(x : Int) : Int { J IntI that.m?�?(J?I x) }
n(x : ?) : ? { that.n?�?(x) }

}

By keeping n present, it is possible to return an instance of E to C again. If we were to
remove n, then E would no longer be convertible back to C again.

4.2 Type soundness
The KafKa type soundness theorem ensures that a well-formed program can only get stuck
at a dynamic invocation, a subtype cast, or a behavioral cast, and only there when justified.

I Theorem 1 (KafKa type soundness). For every well-formed state K e σ X and well-typed
expression ∅Σ K ` e : t, where heap typing Σ is obtained by mapping the class of each object
to the corresponding address, one of the following holds:

There exists some reference a such that e = a.
K e σ → K′ e′ σ′, where K′ e′ σ′ X, ∅Σ′ K′ ` e′ : t, σ′has all of the values of σ, Σ′ has
all of the types of σ′, and K′has all of the classes of K.
e = E[a@m?�?(a′)] and a refers to an object without a method m.
e = E[〈C〉 a], and a refers to an object whose class is not a subtype of C.
e = E[JCI a], and C contains a method that a does not.

The proof is mostly straightforward, with one unusual case, centered around the bcast
metafunction. When the bcast metafunction is used to generate a wrapper class, which is
then instantiated, producing a new class table and heap, we must then show that the new
class table is well formed, that the new heap is also well formed, and that the new wrapper
is a subtype of the given type C. Proving these properties is relatively easy. Class table well-
formedness follows by construction of the wrapper class and by well-formedness of the old
class table. Heap well-formedness follows by well-formedness of the class table, construction
of the new heap, and well-formedness of the old heap. Proving that the type of the wrapper
is a subtype of the required type proceeds by structural induction over the required type.
The proof of soundness has been formalized in Coq and is available in the supplementary
material. The proof relies on two axioms dealing with recursive structural subtyping. We
did not prove these as they have been shown in prior work [13].

Chung, Li, Zappa Nardelli, Vitek 12:15

4.3 Discussion
The design of KafKa’s two invocation forms bears discussion. In some previous works,
dynamic invocation has been implemented by a combination of a cast and a statically typed
call. In our case, following this approach would require creating a type for each invocation
(as was done in [29]). Instead, providing a dynamic invocation form seemed more natural.
The use of explicitly typed invocation is a result of our desire to be able to rule out more
errors statically. Whenever a translation can generate a static invocation, the soundness
result ensure that the call will succeed. But, some methods need to be called from both
a typed and untyped context, to achieve this we generate two versions of the method and
leverage the difference between typed and untyped calls to express invovations occuring in
each context.

One of our requirements for KafKa was that it support transparent wrappers as these are
needed for the behavioral approach. The combination of structural subtyping and dynamic
class generation allows to generate subtypes on the fly. These subtypes have all the methods
of the target type plus some new ones. The choice of having fields be private means that
the wrappers do not have to special case field access. If fields were accessible from outside
the object, some more complex rewritting would have to be used.

KafKa was intended to match the intermediate languages of commercial VMs. To val-
idate this, we implemented a compiler from KafKa to C#.2 The only challenge was due
to subtyping. KafKa uses structural typing, while C# is nominal, and KafKa allows meth-
ods in subtypes to be contra-variant in argument and co-variant in return type, while C#
requires invariance. Implementing structural subtyping on top of a nominally typed lan-
guage is tricky. Structural types create implicit subtyping relationships, which the nominal
type system expects to be explicit. Prior work used reflection and complex run-time code
generation [9], but this is needlessly complex for a proof of concept. Instead, we reify the
implicit relationships introduced by structural subtyping into explicit nominal relationships
by generating interfaces. Given two classes C and D, where K ` C <: D holds, we gener-
ate two interfaces CI and DI, where CI is declared to extend DI. As a result, if two types
are subtypes, their corresponding C# interfaces will be as well. The next problem is that
KafKa allows subtype methods to be contra-variant in argument and co-variant in return
types. As a result, a single method in CI may not be sufficient to implement DI. We solve
this by having every class’s C# equivalent implement every interface explicitly, with each
explicit implementation delegating to the real, most general, implementation. Despite these
issues, we were able to accurately translate KafKa types. We translate static and dynamic
invocations into corresponding C# invocations since C# also has a dynamic type. The
underlying run time can then use the translated KafKa types to perform method dispatch,
while inserting dynamic checks wherever the KafKa code calls for an untyped invocation.
This prototype shows that KafKa primitives are close to those of intermediate languages. As
a result, the translation of gradual type systems to KafKa provides insight as to how they
might be implemented.

2 github.com/BenChung/GradualComparisonArtifact/netImpl

ECOOP 2018

github.com/BenChung/GradualComparisonArtifact/netImpl

12:16 Gradual Typing for Objects

5 Translating Gradual Type Systems
“Was ist mit mir geschehen? dachte er. Es war kein Traum”

Equipped with the source and target languages, we can describe the gradual-to-statically
typed translation from source to KafKa. Each semantics is translated through a function
mapping well-typed surface programs into well-typed KafKa terms. The translation explicitly
determines which type casts need to be inserted and the invocation forms to use. A type-
driven translation will insert casts where the surface language used consistency.

5.1 Class Translation
The translations for surface level classes are shown in Fig. 6. Each class in the surface
language translates to a homonymous KafKa class, retaining type names through translation.
The grey background denotes code generated in the translation. The notation e; e′ denotes
sequencing.

Optional. The optional approach provides no correctness guarantees. Retaining the
surface type annotations through translation would not preserve this semantics, so we erase
them. The resulting class has all fields, all method arguments, and all return values typed
as ?.

Transient. In the transient approach, ensure that for any method call, the receiver does
have a method with the corresponding name. To encode this within the KafKa type system

Optional:

OJclass C { fd1.. md1.. }K = class C { fd′
1.. md′

1.. }
where fd′

1 = f : ? .. fd1 = f : t..
md′

1 = m(x : ?) : ? {e′} ..
md1 = m(x : t1) : t2 {e} e′ = OJeK

Transient:

T Jclass C { fd1.. md1.. }K = class C { fd′
1.. md′

1.. }
where fd′

1 = f : ? .. fd1 = f : t..
md′

1 = m(x : ?) : ? {〈t〉 x ; e′
1} ..

md1 = m(x : t) : t′ {e}.. e′
1 = T LeM?

x:t this:C ..
Behavioral:

BJclass C { fd1.. md1.. }K = class C { fd1.. md′
1.. }

where md′
1 = m(x : t) : t′ {e′

1} ..
md1 = m(x : t) : t′ {e1} .. e′

1 = BJe1Kx:t this:C

Concrete:

CJclass C { fd1.. md1.. }K = class C { fd1.. md′
1..md′′

1 .. }

where md′
1 = m(x : t1) : t2 {e′} ..

md1 = m(x : t1) : t2 {e}.. e′ = CLeMt2
this:C x:t1

..
md′′

1 = m(x : ?) : ? {〈?〉 this.mt1�t2 (〈t1〉 x)}
if t1 6= ?

empty otherwise ..

Figure 6 Translations for classes.

Chung, Li, Zappa Nardelli, Vitek 12:17

requires replacing all of the argument and return types with ?. This translation allows
functions to be called under any type and to return values of any type. Casts to the erased
types are then effectively shallow structural checks only. As there is no guarantee that fields
contain values of their type, the translation sets their type to ?.

Behavioral. The behavioral approach guarantees soundness by wrapping values that
cross type-untyped boundaries. Methods are preserved by the translation but bodies are
translated.

Concrete. The concrete approach ensures that variables of non-? types refer to subtypes
of the given type. Each method appearing in the original class is retained as such with its
body translated. Moreover, all typed methods could be called from an untyped context,
so untyped variants are generated that guard the typed functions. These variants perform
subtype casts on their arguments to ensure that they were given the right types, then call
the guarded typed function.

5.2 Expression Translation

To accommodate differences between the gradual typing semantics, we use two different
expression translation schemes. The first is a type-agnostic one, used for the optional ap-
proach. OJeK denotes optional translation, where e is the target expression, and the result
is a KafKa term. We use this form to simplify the optional translation, as it is ambivalent
about the types of the expressions it is translating; the optional semantics simply eliminates
all of them.

The second translation form is type-aware, used for the three other approaches. The
type-aware translation has two forms, SJeKΓ and SLeMt

Γ, inspired by work on bidirectional
type-checking [15]. The first form, SJeKΓ, is analogous to the synthetic case in bidirectional
type-checking. It is used for expressions without any specific required type. The second form,
SLeMt

Γ, is used when e must have some type t. Analogous to the analytic case of bidirectional
type-checking, this form applies when some enclosing expression has an expectation of the
type of e. For example, it is used in translation of method arguments, which must conform
to the types of the arguments to the method. We refer to this as assertive translation. These
two forms allow us to identify where consistency was needed to conclude the surface level
typing judgment.

Transient:

T LeMt
Γ = e′ where K,Γ ` e : t′ K ` t′ <: t e′ = T JeKΓ

T LeMt
Γ = 〈t〉 e′ where K,Γ ` e : t′ K ` t′ 6<: t e′ = T JeKΓ

Behavioral:

BLeMt
Γ = e′ where K,Γ ` e : t′ K ` t′ <: t e′ = BJeKΓ

BLeMt
Γ = J tI e′ where K,Γ ` e : t′ K ` t′ 6<: t e′ = BJeKΓ

Concrete:

CLeMt
Γ = e′ where K,Γ ` e : t′ K ` t′ <: t e′ = CJeKΓ

CLeMt
Γ = 〈t〉 e′ where K,Γ ` e : t′ K ` t′ 6<: t e′ = CJeKΓ

Figure 7 Assertive translation.

ECOOP 2018

12:18 Gradual Typing for Objects

The assertive translation of Fig. 7 is responsible for producing well-typed terms by adding
casts into expressions where static types differ. The rules closely track the convertibility
relation of the surface language. Every type-driven translation has two cases. The first
case is used when the required type happens to be a supertype of the expression’s actual
type, in which cast upcasting can happen implicitly and no further action is required. The
second case handles typed-untyped boundaries, conversions to or from ?. The concrete
and transient approaches both use the subtype cast operator to protect these boundaries,
though the effective semantics are different; concrete retains the types that transient erases,
so subtype casts in transient check structural compatibility (e.g. are all the needed methods
present) alone whereas concrete subtype casts check the entire object’s types. The behavioral
approach instead inserts behavioral casts at boundaries.

The translation of field access appears in Fig. 8. The optional translation only inserts
a cast to ? in front of uses this as a technicality required for statically typing terms. The
transient translation casts variables and fields to their statically expected type, as their
values may be of any type. In transient, however, subtype casts only check the structure
of the types. The behavioral translation and the concrete translation leave both types of
access intact.

Optional:

OJxK = x
OJthisK = 〈?〉 this
OJthis.fK = this.f

Transient:

T JxKΓ = 〈t〉 x where K,Γ ` x : t
T JthisKΓ = this
T Jthis.fKΓ = 〈t〉 this.f where K,Γ ` this : C f : t ∈ K(C)

Behavioral:

BJxKΓ = x
BJthisKΓ = this
BJthis.fKΓ = this.f

Concrete:

CJxKΓ = x
CJthisKΓ = this
CJthis.fKΓ = this.f

Figure 8 Translations variables and field access.

The translation for assignment is shown in Fig. 9. All the approaches translate the value
only differing in the expected type. Behavioral and concrete require that the result has
the statically known type, transient expects ?, and the optional semantics imposes no type
requirement whatsoever.

The translation for object creation, shown in Fig. 10, follows the same reasoning. It
inserts casts for each argument to be the required type according to class translation.

The translations for invocation are shown in Fig. 11. The optional approach translates
all invocations to dynamic invocation, as it cannot provide any static guarantee. In the
concrete and behavioral approaches, since the static types are retained, arguments must be
asserted to have the statically known type. In the transient semantics, the argument type is
ignored, so the argument to a statically typed method call is only required to be of type ?,
but the return type is checked. In all of the systems, if the type of the receiver is ?, dynamic
invocation is used.

Chung, Li, Zappa Nardelli, Vitek 12:19

Optional:

OJthis.f = eK = this.f = e′ where e′ =OJeK

Transient:

T Jthis.f = eKΓ = this.f = e′ where K,Γ ` this : C f : t ∈ K(C) e′ = T LeM?
Γ

Behavioral:

BJthis.f = eKΓ = this.f = e′ where K,Γ ` this : C f : t ∈ K(C) e′ = BLeMt
Γ

Concrete:

CJthis.f = eKΓ = this.f = e′ where K,Γ ` this : C f : t ∈ K(C) e′ = CLeMt
Γ

Figure 9 Translations for assignment.

Optional:

OJnew C(e1..)K = 〈?〉new C(e′
1..) where e′

1 = OJe1K ..

Transient:

T Jnew C(e1..)KΓ = new C(e′
1..) where f1 : t1 ∈ K(C) e′

1 = T Le1M?
Γ ..

Behavioral:

BJnew C(e1..)KΓ = new C(e′
1..) where f1 : t1 ∈ K(C) e′

1 = BLe1Mt1
Γ ..

Concrete:

CJnew C(e1..)KΓ = new C(e′
1..) where f1 : t1 ∈ K(C) e′

1 = CLe1Mt1
Γ ..

Figure 10 Translations for object creation.

Optional:

OJe1.m(e2)K = e′
1@m?�?(e′

2) where e′
1 = OJe1K e′

2 = OJe2K

Transient:

T Je1.m(e2)KΓ = e′
1@m?�?(e′

2) where K,Γ ` e1 : ? e′
1 = T Je1KΓ e′

2 = T Le2M?
Γ

T Je1.m(e2)KΓ = 〈D2〉 e′
1.m?�?(e′

2) where K,Γ ` e1 : C e′
1 = T Je1KΓ e′

2 = T Le2M?
Γ

m(D1) : D2 ∈ K(C)

Behavioral:

BJe1.m(e2)KΓ = e′
1@m?�?(e′

2) where K,Γ ` e1 : ? e′
1 = BJe1KΓ e′

2 = BLe2M?
Γ

BJe1.m(e2)KΓ = e′
1.mD1�D2 (e′

2) where K,Γ ` e1 : C e′
1 = BJe1KΓ e′

2 = BLe2MD1
Γ

m(D1) : D2 ∈ K(C)

Concrete:

CJe1.m(e2)KΓ = e′
1@m?�?(e′

2) where K,Γ ` e1 : ? e′
1 = CJe1KΓ e′

2 = CLe2M?
Γ

CJe1.m(e2)KΓ = e′
1.mD1�D2 (e′

2) where K,Γ ` e1 : C e′
1 = CJe1KΓ e′

2 = CLe2MD1
Γ

m(D1) : D2 ∈ K(C)

Figure 11 Translations for function invocation.

ECOOP 2018

12:20 Gradual Typing for Objects

5.3 Example
We illustrate the translation with the behavior of litmus program L3. The operational
principle of L3 is that it creates a new object (an instance of C), then uses an untyped
intermediate to represent it as type E. Type E ascribes the wrong type for argument x,
substituting D for the correct type C.

Source:

class F { m(x : E) : E {x} n(x : ?) : ? {this.m(x)} }

Optional:

class F { m(x : ?) : ? {x} n(x : ?) : ? {(〈?〉 this)@m?�?(x)} }

Transient:

class F { m(x : ?) : ? {〈E〉 x; 〈?〉 x} n(x : ?) : ? {〈?〉 x; 〈?〉 〈E〉 this.m?�?(〈?〉 〈?〉 x)} }

Behavioral:

class F { m(x : E) : E {x} n(x : ?) : ? {J?I this.mE�E(JEI x)} }

Concrete:

class F { m(x : E) : E {x} n(x : ?) : ? {〈?〉 this.mE�E(〈E〉 x)} }

Figure 12 Class translation for litmus test L3.

Two of the gradual type systems notice this invalid type. Concrete errors on L3 because
E is not a subtype of C. With behavioral, the unused type ascription is saved as a wrapper
and is enforced causing a run-time error.

While this reasoning provides an intuition, it provides few detail for which we turn to
our formalism. We present the translation from the top, starting with classes in Fig. 12.
The optional approach does no checking whatsoever, and simply erases types. Transient
also erases types, but adds argument casts on method entry. In the case of m, argument x
is checked to be of type E, as the translation of type E does not include types no type error
will be reported. Behavioral retains typed methods but adds behavioral casts on untyped
methods. The concrete semantics retains typed methods, and adds a subtype cast when a
variable of type ? is passed to a method that expects and E.

Source:

class E { m(x : D) : D {x} }

Optional:

class E { m(x : ?) : ? {x} }

Transient:

class E { m(x : ?) : ? {〈E〉 x; 〈?〉 x} }

Behavioral:

class E { m(x : E) : E {x} }

Concrete:

class E { m(x : E) : E {x} }

Figure 13 Translation of E in litmus test L3.

Chung, Li, Zappa Nardelli, Vitek 12:21

Fig. 13 presents the translation of class E. For the transient semantics, when x is cast to
E, all of the types on E are erased. Casting to E is tantamount to asking for the existence
of the method m. In contrast, the concrete semantics retains the types of m. A cast to E
is equivalent to checking if a method m that takes and returns an E exists. This comes at
the cost of the ability to migrate between untyped and typed code. Suppose that both the
optional and concrete versions of E existed, under a different name F. In that program, only
the concrete version of E could be used with the concrete version of F. Despite implementing
the same behavior, Behavioral uses the same representation for E as concrete. The behavioral
cast allows to use any value that behaves like an E.

To examine the operation of the behavioral cast in more detail, Fig. 14 depicts the
wrapper classes generated at the cast from C to ? and from it to E. Class C1 takes an
instance of C and makes it safe against use as ?. In behavioral, no typed invocations can be
made on a value that was cast to ? (and not cast to some type somewhere); only untyped
invocations are allowed. As a result, the wrapper need only generate an untyped version of
C’s method a, which calls the underlying C instance’s a (adding suitable casts). The second
wrapper class C2 takes the C1 wrapper and casts it back to E. This wrapper takes the
untyped implementation of a and wraps it again, calling it with an argument cast to ? and
casting the return to D.

class C { a(x : C) : C {x} } class E { a(x : D) : D {x} }

class C1 { that : C a(x : ?) : ? {J?I this.that.aC�C(JCI x)} }
class C2 { that : C1 a(x : D) : D {JDI this.that.a?�?(J?I x)} }

Figure 14 Behavioral wrappers.

5.4 Discussion
These translations explicit the enforcement machinery of each of the four approaches. Pro-
grams can get stuck at dynamic invocation and casts. Inspecting where these are inserted
gives a precise account of what constitutes an error in each gradual type system.

Our account of the behavioral approach matches its implementation in Typed Racket.
However, one could imagine a slightly less restrictive implementation, one which does not
have a check for method names at wrapper creation. That check is pragmatic but perhaps
too strict — it will rule out programs that may be fine just because a method is missing.
One could have a wrapper that simply reports an error if a missing method is called.

Performance is a perennial worry for implementers of gradual type systems. It is difficult
to guess how a highly optimizing language implementation will perform, as these imple-
mentations are likely to optimize away the majority of the casts and dynamic dispatches.
Consider the progress in the performance of Typed Racket reported in the literature [21, 2].
What we can tell by looking at the translations is that with optional there is no obvious ben-
efit or cost to having type annotations. Transient has checks on reads, which are common,
and typed function calls. Furthermore, those checks are needed even if the entire program
is typed. Both concrete and behavioral can benefit from type information in typed code.
The difference is that the cost of boundary crossing are low in the concrete approach, as it
uses a subtype check whereas behavioral requires allocation of a wrapper. Wrappers may
also complicate the task of devirtualization and unboxing.

ECOOP 2018

12:22 Gradual Typing for Objects

6 Conclusion

This paper introduced KafKa, a framework for comparing the design of gradual type sys-
tems for object-oriented languages. Our approach is to provide translations with different
gradual semantics from a common surface language into KafKa. These translations high-
light the different run-time enforcement strategies deployed by the languages under study.
The differences between gradual type systems are highlighted explicitly by the observable
differences of their behavior in our litmus tests, demonstrating how there is no consensus on
the meaning of error. These litmus tests motivated the need to have a common framework
to explore the design space.

KafKa demonstrates that to express the different gradual approaches, one needs a calcu-
lus with two casts (structural and behavioral), two invocation forms (dynamic and static),
the ability to extend the class table at run-time, and wrappers that expose their underlying
unwrapped methods. We provide a mechanized proof of soundness for KafKa that includes
run-time class generation. We also demonstrate that KafKa can be straightforwardly imple-
mented on top of a stock virtual machine.

A open question for gradual type system designers is performance of the resulting imple-
mentation. Performance remains a major obstacle to adoption of approaches that attempt
to provide soundness guarantees. Under the optional approach, types are removed by the
translation; as a result, performance will be identical to that of untyped code. The transient
approach checks types at uses, so the act of adding types to a program introduces more
casts and may slow the program down (even in fully typed code). In contrast, the behav-
ioral approach avoids casts in typed code. The price it pays for this soundness, however,
is that heavyweight wrappers inserted at typed-untyped boundaries. Lastly, the concrete
semantics is also sound and has low overheads, but comes at a cost in expressiveness and
ability to migrate from untyped to typed.

Going forward, there are several issues we wish to investigate. We do not envision
that supporting nominal subtyping within KafKa will pose problems, it would only take
adding a nominal cast and changing the definition of classes. Then nominal and structural
could coexist. A more challenging question is how to handle the intricate semantics of
Monotonic Reticulated Python. For these we would need a somewhat more powerful cast
operation. Rather than building each new cast into the calculus itself, it would be interesting
to axiomatize the correctness requirements for a cast and let users define their own cast
semantics. The goal would be to have a collection of user defined pluggable casts within a
single framework.

Acknowledgments
The author thank the reviewers of ecoop, popl, esop, and again ecoop for comments
that gradually improved this paper. We are grateful to Leif Andersen, Fabian Muelbrock,
Éric Tanter, Celeste Hollenbeck, Sam Caldwell, Ming-Ho Yee, Lionel Zoubritzky, Benjamin
Greenman and Matthias Felleisen for their feedback. This work funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement 695412), the NSF (award 1544542) and (award 1518844) as
well as ONR (award 503353).

Chung, Li, Zappa Nardelli, Vitek 12:23

References

1 Esteban Allende, Oscar Callaú, Johan Fabry, Éric Tanter, and Marcus Denker. Gradual
typing for Smalltalk. Science of Computer Programming, 96, 2014. doi:10.1016/j.scico.
2013.06.006.

2 Spenser Bauman, Carl Friedrich Bolz-Tereick, Jeremy Siek, and Sam Tobin-Hochstadt.
Sound gradual typing: Only mostly dead. Proc. ACM Program. Lang., 1(OOPSLA), 2017.
doi:10.1145/3133878.

3 Gavin Bierman, Martin Abadi, and Mads Torgersen. Understanding TypeScript. In
European Conference on Object-Oriented Programming (ECOOP), 2014. doi:10.1007/
978-3-662-44202-9_11.

4 Gavin M. Bierman, Erik Meijer, and Mads Torgersen. Adding dynamic types to C#. In
European Conference on Object-Oriented Programming (ECOOP), 2010. doi:10.1007/
978-3-642-14107-2_5.

5 Bard Bloom, John Field, Nathaniel Nystrom, Johan Östlund, Gregor Richards, Rok Str-
nisa, Jan Vitek, and Tobias Wrigstad. Thorn: Robust, concurrent, extensible scripting
on the JVM. In Conference on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA), 2009. doi:10.1145/1639950.1640016.

6 Gilad Bracha. Pluggable type systems. In OOPSLA 2004 Workshop on Revival of Dynamic
Languages, 2004. doi:10.1145/1167473.1167479.

7 Gilad Bracha and David Griswold. Strongtalk: Typechecking Smalltalk in a production
environment. In Conference on Object Oriented Programming Systems Languages and
Applications (OOPSLA), 1993. doi:10.1145/165854.165893.

8 Luca Cardelli. Amber. In LITP Spring School on Theoretical Computer Science, pages
21–47. Springer, 1985.

9 Gilles Dubochet and Martin Odersky. Compiling structural types on the JVM: A compar-
ison of reflective and generative techniques from Scala’s perspective. In Workshop on the
Implementation, Compilation, Optimization of Object-Oriented Languages and Program-
ming Systems (ICOOLPS), 2009. doi:10.1145/1565824.1565829.

10 Robert Findler and Matthias Felleisen. Contracts for higher-order functions. In Inter-
national Conference on Functional Programming (ICFP), 2002. doi:10.1145/581478.
581484.

11 Ben Greenman and Matthias Felleisen. A spectrum of soundness and performance. Proc.
ACM PL (ICFP), to appear, 2018.

12 Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: a minimal
core calculus for Java and GJ. ACM Trans. Program. Lang. Syst., 23(3), 2001. doi:
10.1145/503502.503505.

13 Timothy Jones and David J. Pearce. A mechanical soundness proof for subtyping over
recursive types. In Workshop on Formal Techniques for Java-like Programs (FTfJP), 2016.
doi:10.1145/2955811.2955812.

14 Fabian Muehlboeck and Ross Tate. Sound gradual typing is nominally alive and well. Proc.
ACM Program. Lang., 1(OOPSLA), 2017. doi:10.1145/3133880.

15 Benjamin C. Pierce and David N. Turner. Local type inference. In Symposium on Principles
of Programming Languages (POPL), 1998. doi:10.1145/345099.345100.

16 Gregor Richards, Ellen Arteca, and Alexi Turcotte. The VM already knew that: Lever-
aging compile-time knowledge to optimize gradual typing. Proc. ACM Program. Lang.,
1(OOPSLA), 2017. doi:10.1145/3133879.

17 Gregor Richards, Francesco Zappa Nardelli, and Jan Vitek. Concrete types for TypeScript.
In European Conference on Object-Oriented Programming (ECOOP), 2015. doi:10.4230/
LIPIcs.ECOOP.2015.76.

ECOOP 2018

http://dx.doi.org/10.1016/j.scico.2013.06.006
http://dx.doi.org/10.1016/j.scico.2013.06.006
http://dx.doi.org/10.1145/3133878
http://dx.doi.org/10.1007/978-3-662-44202-9_11
http://dx.doi.org/10.1007/978-3-662-44202-9_11
http://dx.doi.org/10.1007/978-3-642-14107-2_5
http://dx.doi.org/10.1007/978-3-642-14107-2_5
http://dx.doi.org/10.1145/1639950.1640016
http://dx.doi.org/10.1145/1167473.1167479
http://dx.doi.org/10.1145/165854.165893
http://dx.doi.org/10.1145/1565824.1565829
http://dx.doi.org/10.1145/581478.581484
http://dx.doi.org/10.1145/581478.581484
http://dx.doi.org/10.1145/503502.503505
http://dx.doi.org/10.1145/503502.503505
http://dx.doi.org/10.1145/2955811.2955812
http://dx.doi.org/10.1145/3133880
http://dx.doi.org/10.1145/345099.345100
http://dx.doi.org/10.1145/3133879
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.76
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.76

12:24 Gradual Typing for Objects

18 Jeremy Siek. Gradual typing for functional languages. In Scheme and Functional Program-
ming Workshop, 2006. http://ecee.colorado.edu/~siek/pubs/pubs/2006/siek06_
gradual.pdf.

19 Jeremy Siek and Walid Taha. Gradual typing for objects. In European Conference on
Object-Oriented Programming (ECOOP), 2007. doi:10.1007/978-3-540-73589-2_2.

20 Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, and John Tang Boyland. Refined
criteria for gradual typing. In Summit on Advances in Programming Languages (SNAPL),
2015. doi:10.4230/LIPIcs.SNAPL.2015.274.

21 Asumu Takikawa, Daniel Feltey, Ben Greenman, Max New, Jan Vitek, and Matthias
Felleisen. Is sound gradual typing dead? In Symposium on Principles of Programming
Languages (POPL), 2016. doi:10.1145/2837614.2837630.

22 Asumu Takikawa, T. Stephen Strickland, Christos Dimoulas, Sam Tobin-Hochstadt, and
Matthias Felleisen. Gradual typing for first-class classes. In Conference on Object Ori-
ented Programming Systems Languages and Applications (OOPSLA), 2012. doi:10.1145/
2398857.2384674.

23 The Dart Team. Dart programming language specification, 2016. http://dartlang.org.
24 The Facebook Hack Team. Hack, 2016. http://hacklang.org.
25 Sam Tobin-Hochstadt and Matthias Felleisen. Interlanguage migration: from scripts to

programs. In Symposium on Dynamic languages (DLS), 2006. doi:10.1145/1176617.
1176755.

26 Sam Tobin-Hochstadt and Matthias Felleisen. The design and implementation of typed
Scheme. In Symposium on Principles of Programming Languages (POPL), 2008. doi:
10.1145/1328438.1328486.

27 Michael Vitousek, Andrew Kent, Jeremy Siek, and Jim Baker. Design and evaluation
of gradual typing for Python. In Symposium on Dynamic languages (DLS), 2014. doi:
10.1145/2661088.2661101.

28 Michael M. Vitousek, Cameron Swords, and Jeremy G. Siek. Big types in little runtime:
Open-world soundness and collaborative blame for gradual type systems. In Symposium
on Principles of Programming Languages (POPL), 2017. doi:10.1145/3009837.3009849.

29 Tobias Wrigstad, Francesco Zappa Nardelli, Sylvain Lebresne, Johan Östlund, and Jan
Vitek. Integrating typed and untyped code in a scripting language. In Symposium on
Principles of Programming Languages (POPL), 2010. doi:10.1145/1706299.1706343.

http://ecee.colorado.edu/~siek/pubs/pubs/2006/siek06_gradual.pdf
http://ecee.colorado.edu/~siek/pubs/pubs/2006/siek06_gradual.pdf
http://dx.doi.org/10.1007/978-3-540-73589-2_2
http://dx.doi.org/10.4230/LIPIcs.SNAPL.2015.274
http://dx.doi.org/10.1145/2837614.2837630
http://dx.doi.org/10.1145/2398857.2384674
http://dx.doi.org/10.1145/2398857.2384674
http://dartlang.org
http://hacklang.org
http://dx.doi.org/10.1145/1176617.1176755
http://dx.doi.org/10.1145/1176617.1176755
http://dx.doi.org/10.1145/1328438.1328486
http://dx.doi.org/10.1145/1328438.1328486
http://dx.doi.org/10.1145/2661088.2661101
http://dx.doi.org/10.1145/2661088.2661101
http://dx.doi.org/10.1145/3009837.3009849
http://dx.doi.org/10.1145/1706299.1706343

	Introduction
	Background
	A Family of Gradually Typed Languages and their Litmus Test
	A Common Surface Language
	Litmus
	Discussion

	KafKa: A Core Calculus
	Syntax and Semantics
	Method Invocation
	Run-time Casts

	Type soundness
	Discussion

	Translating Gradual Type Systems
	Class Translation
	Expression Translation
	Example
	Discussion

	Conclusion

