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As a scientific programming language, Julia strives for performance but also provides high-level productivity

features. To avoid performance pathologies, Julia users are expected to adhere to a coding discipline that

enables so-called type stability. Informally, a function is type stable if the type of the output depends only

on the types of the inputs, not their values. This paper provides a formal definition of type stability as well

as a stronger property of type groundedness, shows that groundedness enables compiler optimizations, and

proves the compiler correct. We also perform a corpus analysis to uncover how these type-related properties

manifest in practice.
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1 INTRODUCTION

Performance is serious business for a scientific programming language. Success in that niche hinges
on the availability of a rich ecosystem of high-performance mathematical and algorithm libraries.
Julia is a relative newcomer in this space. Its approach to scientific computing is predicated on
the bet that users can write efficient numerical code in Julia without needing to resort to C or
Fortran. The design of the language is a balancing act between productivity features, such as
multiple dispatch and garbage collection, and performance features, such as limited inheritance
and restricted-by-default dynamic code loading. Julia has been designed to ensure that a relatively
straightforward path exists from source code to machine code, and its performance results are
encouraging. They show, on some simple benchmarks, speeds in between those of C and Java. In
other words, a new dynamic language written by a small team of language engineers can compete
with mature, statically typed languages and their highly tuned compilers.

Writing efficient Julia code is best viewed as a dialogue between the programmer and the
compiler. From its earliest days, Julia exposed the compiler’s intermediate representation to users,
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encouraging them to (1) observe if and how the compiler is able to optimize their code, and (2) adapt
their coding style to warrant optimizations. This came with a simple execution model: each time a
function is called with a different tuple of concrete argument types, a new specialization is generated
by Julia’s just-in-time compiler. That specialization leverages the run-time type information about
the arguments, to apply unboxing and devirtualization transformations to the code. The former lets
the compiler manipulate values without indirection and stack allocate them; the latter sidesteps
the powerful but costly multiple-dispatch mechanism and enables inlining of callees.
One key to performance in Julia stems from the compiler’s success in determining the concrete

return type of any function call it encounters. The intuition is that in such cases, the compiler
is able to propagate precise type information as it traverses the code, which, in turn, is crucial
for unboxing and devirtualization. More precisely, Julia makes an important distinction between
concrete and abstract types: a concrete type such as Int64, is final in the sense that the compiler
knows the size and exact layout of values of that type; for values of abstract types such as Number,
the compiler has no information. The property we alluded to is called type stability. Its informal
definition states that a method is type stable if the concrete type of its output is entirely determined
by the concrete types of its arguments.1 Folklore suggests that one should strive to write type-stable
methods outright, or, if performance is an issue, refactor methods so that they become type stable.

Our goal in this paper is three-fold. First, we give a precise definition of type stability that allows
for formal reasoning. Second, we formalize the relationship between type-stable code and the ability
of a compiler to perform type-based optimizations; to this end, we find that a stronger property,
which we call type groundedness, describes optimizable code more precisely. Finally, we analyze
prevalence of type stability in open-source Julia code and identify patterns of type-stable code. We
make the following contributions:

• An overview of type stability and its role in Julia, as well as the intuition behind stability and
groundedness (Sec. 3).
• An abstract machine called Jules, which models Julia’s intermediate representation, dynamic
semantics, and just-in-time (JIT) compilation (Sec. 4).
• Formal definitions of groundedness and stability, and a proof that type-grounded methods
are fully devirtualized by the JIT compiler (Sec. 4.3). Additionally, we prove that the JIT
compilation is correct with respect to the dynamic-dispatch semantics (Sec. 4.4). Detailed
proofs are available in the extended version of the paper [Pelenitsyn et al. 2021b].
• A corpus analysis of packages to measure stability and groundedness in the wild, find patterns
of type-stable code, and identify properties that correlate with unstable code (Sec. 5).

The paper is accompanied by the artifact [Pelenitsyn et al. 2021a] reproducing results of Sec. 5.

2 JULIA IN A NUTSHELL

The Julia language is designed around multiple dispatch [Bezanson et al. 2017]. Programs consist of
functions that are implemented by multiplemethods of the same name; each method is distinguished
by a distinct type signature, and all methods are stored in a so-called method table. At run time, the
Julia implementation dispatches a function call to the most specific method by comparing the types
of the arguments to the types of the parameters of all methods of that function. As an example of
a function and its constituent methods, consider +; as of version 1.5.4 of the language, there are
190 implementations of +, each covering a specific case determined by its type signature. Fig. 1
displays custom implementations for 16-bit floating point numbers, missing values, big-floats/big-
integers, and complex arithmetic. Although at the source-code level, multiple methods look similar

1https://docs.julialang.org/en/v1/manual/faq/#man-type-stability
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✞ ☎

# 184 methods for generic function "+":

[1] +(a::Float16, b::Float16) in Base at float.jl:398

[2] +(::Missing, ::Missing) in Base at missing.jl:114

[3] +(::Missing) in Base at missing.jl:100

[4] +(::Missing, ::Number) in Base at missing.jl:115

[5] +(a::BigFloat, b::BigFloat, c::BigFloat, d::BigFloat) in Base.MPFR at mpfr.jl:541

[6] +(a::BigFloat, b::BigFloat, c::BigFloat) in Base.MPFR at mpfr.jl:535

[7] +(x::BigFloat, c::BigInt) in Base.MPFR at mpfr.jl:394

[8] +(x::BigFloat, y::BigFloat) in Base.MPFR at mpfr.jl:363

...
✝ ✆

Fig. 1. Methods from the standard library

to overloading known from languages like C++ and Java, the key difference is that those languages
resolve overloading statically whereas Julia does that dynamically using multiple dispatch.

Julia supports a rich type language for defining method signatures. Base types consist of either
bits typesÐtypes that have a direct binary representation, like integersÐor structs. Both bits types
and struct types, referred to as concrete types, can have supertypes, but all supertypes are abstract
types. Abstract types can be arranged into a single-subtyping hierarchy rooted at Any, and no
abstract type can be instantiated. The type language allows for further composition of these base
types using unions, tuples, and bounded existential constructors; the result of composition can be
abstract or concrete. Zappa Nardelli et al. [2018] gives a detailed discussion of the type language
and of subtyping.

Any function call in a program, such as x+y, requires choosing one of the methods of the target
function. Method dispatch is a multi-step process. First, the implementation obtains the concrete
types of arguments. Second, it retrieves applicable methods by checking for subtyping between
argument types and type annotations of the methods. Next, it sorts these methods into subtype
order. Finally, the call is dispatched to the most specific methodÐa method such that no other
applicable method is its strict subtype. If no such method exists, an error is produced. As an example,
consider the above definition of +: a call with two BigFloat’s dispatches to definition 8 from Fig. 1.
Function calls are pervasive in Julia, and their efficiency is crucial for performance. However,

the many complex type-level operations involved in dispatch make the process slow. Moreover, the
language implementation, as of this writing, does not perform inline caching [Deutsch and Schiffman
1984], meaning that dispatch results are not cached across calls. To attain acceptable performance,
the compiler attempts to remove as many dispatch operations as it can. This optimization leverages
run-time type information whenever a method is compiled, i.e., when it is called for the first time
with a novel set of argument types. These types are used by the compiler to infer types in the
method body. Then, this type information frequently allows the compiler to devirtualize and inline
the function calls within a method [Aigner and Hölzle 1996], thus improving performance. However,
this optimization is not always possible: if type inference cannot produce a sufficiently specific
type, then the call cannot be devirtualized. Consider the prior example of x+y: if y is known to
be one of BigFloat or BigInt, the method to call cannot be determined. This problem arises for
various reasons, for example, accessing a struct field of an abstract type, or the type inferencer
losing precision due to a branching statement. A more detailed description of the compilation
strategy and its performance is given in [Bezanson et al. 2018].
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3 TYPE STABILITY: A KEY TO PERFORMANCE?

Designing performant Julia code is best understood as a conversation between the language
designers, compiler writers, and the developers of widely used packages. The designers engineered
Julia so that it is possible to achieve performance with a moderately optimizing just-in-time (JIT)
compiler and with disciplined use of the abstractions included in the language [Bezanson et al.
2018]. For example, limiting the reach of eval by default [Belyakova et al. 2020] allows for a
simpler compiler implementation, and constraining struct types to be final enables unboxing. The
compiler’s work is split between high-level optimizations, mainly devirtualization and unboxing,
and low-level optimizations that are off-loaded to LLVM. This split is necessary as LLVM on its own
does not have enough information to optimize multiple dispatch. Removing dispatch is the key to
performance, but to perform the optimization, the compiler needs precise type information. Thus,
while developers are encouraged to write generic code, the code also needs to be conducive to type
inference and type-based optimizations. In this section, we give an overview of the appropriate
coding discipline, and explain how it enables optimizations.

Performance. To illustrate performance implications of careless coding practices, consider Fig. 2,
which displays a method for one of the Julia microbenchmarks, pisum. For the purposes of this
example, we have added an identity function id which was initially implemented to return its
argument in both branches, as well-behaved identities do. Then, the id method was changed to
return a string in the impossible branch (rand() returns a value from 0 to 1). The impact of that
change was about a 40% increase in the execution time of the benchmark (Julia 1.5.4).

✞ ☎

function id(x)

(rand() == 4.2) ? "x" : x

end

function pisum()

sum = 0.0

for j = 1:500

sum = 0.0

for k = 1:10000

sum += id(1.0/(k*id(k)))

end

end

sum

end
✝ ✆

(a) Microbenchmark source code, redacted

✞ ☎

julia> @code_warntype id(5)

Variables

#self#::Core.Compiler.Const(id, false)

x::Int64

Body::Union{Int64, String}

1 - %1 = Main.rand()::Float64

| %2 = (%1 == 4.2)::Bool

+-- goto #3 if not %2

2 - return "x"

3 - return x

julia> @code_warntype pisum()

...

| %20 = k::Int64

| %21 = Main.id(k)::Union{Int64, String}
✝ ✆

(b) Julia session

Fig. 2. A Julia microbenchmark (a) illustrating performance implications of careless coding practices: changing

id function to return values of different types leads to longer execution because of the Union type of id(..),

which propagates to pisum (b).

When a performance regression occurs, it is common for developers to study the intermedi-
ate representation produced by the compiler. To facilitate this, the language provides a macro,
code_warntype, that shows the code along with the inferred types for a given function invocation.
Fig. 2 demonstrates the result of calling code_warntype on id(5). Types that are imprecise, i.e.,
not concrete, show up in red: they indicate that concrete type of a value may vary from run to
run. Here, we see that when called with an integer, id may return either an Int64 or a String.
Moreover, the imprecise return type of id propagates to the caller, as can be seen by inspecting
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pisum with code_warntype. Such type imprecision can impact performance in two ways. First, the
sum variable has to be boxed, adding a level of indirection to any operation performed therein.
Second, it is harder for the compiler to devirtualize and inline consecutive calls, thus requiring
dynamic dispatch.

Type Stability. Julia’s compilation model is designed to accommodate source programs with
flexible types, yet to make such programs efficient. The compiler, by default, creates an instance of
each source method for each distinct tuple of argument types. Thus, even if the programmer does
not provide any type annotations, like in the id example, the compiler will create method instances
for concrete input types seen during an execution. For example, since in pisum, function id is called
both with a Float64 and an Int64, the method table will hold two method instances in addition to
the original, user-defined method. Because method instances have more precise argument types,
the compiler can leverage them to produce more efficient code and infer more precise return types.
In Julia parlance, a method is called type stable if its inferred return type depends solely on

the types of its arguments; in the example, id is not type stable, as its return type may change
depending on the input value (in principle). The definition of type stability, though, is somewhat
slippery. The community has multiple, subtly different, informal definitions that capture the same
broad idea, but describe varying properties. The canonical definition from the Julia documentation
describes type stability as

ł[...] the type of the output is predictable from the types of the inputs. In particular, it
means that the type of the output cannot vary depending on the values of the inputs.ž

However, elsewhere, the documentation also states that łAn analogous type-stability problem exists
for variables used repeatedly within a function:ž
✞ ☎

function foo()

x = 1

for i = 1:10

x /= rand()

end

x

end
✝ ✆

This function will always return a Float64, which is the type of x at the end of the foo definition,
regardless of the (nonexistent) inputs. However, the manual says that it is a type stability issue
nonetheless. This is because the variable x is initialized to an Int64 but then assigned a Float64

in the loop. Some versions of the compiler boxed x as it could hold two different types; of course,
in this example, one level of loop unrolling would alleviate the performance issue, but in general,
imprecise types limit compiler optimizations. Conveniently, the code_warntype macro mentioned
above will highlight imprecise types for all intermediate variables. Furthermore, the documentation
states that

ł[t]his serves as a warning of potential type instability.ž

Effectively, there are two competing, type-related properties of function bodies. To address this
confusion, we define and refer to them using two distinct terms:

• type stability is when a function’s return type depends only on its argument types, and
• type groundedness is when every variable’s type depends only on the argument types.

Although type stability is strictly weaker than type groundedness, for the purposes of this paper,
we are interested in both properties. The latter, type groundedness, is useful for performance of the
function itself, as it implies that unboxing, devirtualization, and inlining can occur. The former,
type stability, allows the function to be used efficiently by other functions: namely, type-grounded
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functions may call a function that is only type stable but not grounded. For brevity, when the
context is clear, we will refer to type stability and type groundedness as stability and groundedness
in what follows.

Flavors of stability. Type stability is an inter-procedural property, and in the worst case, it can
depend on the whole program. Consider the functions of Fig. 3. Function f0 is trivially type unstable,
regardless of the type of its input: if good(x) returns true, f0 returns an Int64 value, otherwise f0

returns a String. Function f1 is trivially type stable as all control-flow paths return a constant of
Int64 type. Function f2 is type stable as long as the negation operator is type stable and returns a
value of the same type as its argument. As an example, we show a method -(::Float64) that causes
f2(::Float64) to lose type stability. This is a common bug where the function (-) either returns a
Float64 or Int64 due to the constant 0 being of type Int64. The proper, Julia-style implementation
for this method is to replace the constant 0 with zero(x), which returns the zero value for the type
of x, in this case 0.0.

✞ ☎

function f0(x)

if (good(x))

0

else

"not 0"

end

end
✝ ✆

✞ ☎

function f1(x)

if (good(x))

0

else

1

end

end
✝ ✆

✞ ☎

function f2(x)

if (good(x))

x

else

-x

end

end
✝ ✆

✞ ☎

function -(x::Float64)

if (x==0)

0

else

Base.neg_float(x)

end

end
✝ ✆

Fig. 3. Flavors of stability: f0 is unstable, f1 is stable; f2 is stable if (-) is stable; (-) is unstable.

The example of function f2 illustrates the fact that stability is a whole-program property. Adding
a method may cause some, seemingly unrelated, method to lose type stability.

Stability versus groundedness. Type stability of a method is important for the groundedness of
its callers. Consider the function h(x::Int64)=g(x)+1. If g(x)=x, it follows that h is both stable and
grounded, as g will always return an Int64, and so will h. However, if we define g(x) = (x==2)?

"Ho" : 4, then h suddenly loses both properties. To recover stability and groundedness of h, it is
necessary to make g type stable, yet it does not have to be grounded. For example, despite the
presence of the imprecise variable y, the following definition makes h grounded: g(x) = let y =(x=

=2 ?"Ho" : 4) in x end.
In practice, type stability is sought after when making architectural decisions. Idiomatic Julia

functions are small and have no internal type-directed branching; instead, branches on types are
replaced with multiple dispatch. Once type ambiguity is lifted into dispatch, small functions with
specific type arguments are relatively easy to make type stable. In turn, this architecture allows for
effective devirtualization in a caller, as in many cases, the inferred type at a call site will determine
its callee at compilation time.
Thus, writing type-stable functions is a good practice, for it provides callers of those functions

with an opportunity to be efficient. However, stability of callees is not a sufficient condition for
the efficiency of their callers: the callers themselves need to strive for type groundedness, which
requires eliminating type imprecision from control flow.

Patterns of instability. There are several code patterns that are inherently type unstable. For one,
accessing abstract fields of a structure is an unstable operation: the concrete type of the field value
depends on the struct value, not just struct type. In Julia, it is recommended to avoid abstractly
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typed fields if performance is important, but they are a useful tool for interacting with external
data sources and representing heterogenous data.

Another example is sum types (algebraic data types or open unions), which can be modeled with
subtyping in Julia. Take a hierarchy of an abstract type Expr and its two concrete subtypes, Lit and
BinOp. Such a hierarchy is convenient, because it allows for an Expr evaluator written with multiple
dispatch:
✞ ☎

run(e :: Lit) = ...

run(e :: BinOp) = ...
✝ ✆

If we want the evaluator to be called with the result of a function parse(s ::String), the latter
cannot be type stable: parse will return values of different concrete types, Lit and BinOp, depending
on the input string. If one does want parse to be stable, they need to always return the same concrete
type, e.g. an S-expression-style struct. Then, run has to be written without multiple dispatch, as a
big if-expression, which may be undesirable.

4 JULES: FORMALIZING STABILITY AND GROUNDEDNESS

To simplify reasoning about type stability and groundedness, we first define Jules, an abstract ma-
chine that provides an idealized version of Julia’s intermediate representation (IR) and compilation
model. Jules captures the just-in-time (JIT) compilation process that (1) specializes methods for
concrete argument types as the program executes, and (2) replaces dynamically dispatched calls
with direct method invocations when type inference is able to get precise information about the
argument types. It is the type inference algorithm that directly affects type stability and ground-
edness of code, and thus the ability of the JIT compiler to optimize it. While Julia’s actual type
inference algorithm is quite complex, its implementation is not relevant for understanding our
properties of interest; thus, Jules abstracts over type inference and uses it as a black box.

M

D

Julia source
Jules method table

Jules type table

Julia source code 
combines type 
declarations and 
method definitions. 
Local variables are 
untyped.

Any is the default super 
type. Int is a built in.

Jules compiles field 
access into type-safe 
positional access.

Field access can fail at 
dispatch time.

The result of function is 
the last register.

JIT compilation extends the 
method table with 
specialized instances of 
existing methods. Here f is 
specialised to the concrete 
type of its argument. This 
allows the compiler to 
generate a direct call 
instead of a dispatched call.

✞ ☎

abstract type APt <: Any end

struct Pt <: APt

x :: Int

y :: Int

end

f(p::APt)

p.x

end

main()

p = Pt(41,42)

f(p)

end
✝ ✆
✞ ☎

✝ ✆
✞ ☎

x(%0::Pt)

%1 = %0[0]

f(%0::APt)

%1 = x(%0)

main()

%0 = 41

%1 = 42

%2 = Pt(%0,%1)

%3 = f(%2)
✝ ✆
✞ ☎

✝ ✆
✞ ☎

Pt(Int,Int) <: APt
✝ ✆

✝ ✆
✞ ☎

f(%0::Pt)

%1 = x!Pt(%0)
✝ ✆
✞ ☎

Fig. 4. Compilation from Julia to Jules

Fig. 4 illustrates the relationship between Julia source code, the Jules intermediate representation,
and the result of compilation. We do not model the translation from the source to Jules, and
simply assume that the front-end generates well-formed Jules code.2 A Jules program consists of

2The front-end does not devirtualize function calls, as Julia programmers do not have the ability to write direct method

invocations in the source.
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an immutable type table D and a method table M; the method table can be incrementally extended
with method instances that are compiled by the just-in-time compiler.

The source program of Fig. 4 defines two types, the concrete Pt and its parent, the abstract type
APt, as well as two methods, f and main. When translated to Jules, Pt is added to the type table along
with its supertype APt. Similarly, the methods main and f are added to the Jules method table, along
with accessors for the fields of Pt, with bodies translated to the Jules intermediate representation.

The Jules IR is similar to static single assignment form. Each statement can access values in
registers, and saves its result into a new, consecutively numbered, register. Statements can perform
a dispatched call f(%2), direct call x!Pt(%0), conditional assignment (not shown), and a number of
other operations. The IR is untyped, but the translation from Julia is type sound. In particular, type
soundness guarantees that only dispatch errors can occur at run time. For example, compilation
will produce only well-formed field accesses such as the one in x(%0::Pt), but a dispatched call
x(%0) in f could fail if f was called with a struct that did not have an x field. In order to perform
this translation, Jules uses type inference to determine the types of the program’s registers. We
abstract over this type inference mechanism and only specify that it produces sound (with respect
to our dynamic semantics) results.
Execution in Jules occurs between configurations consisting of both a stack of frames F (rep-

resenting the current execution state) and a method table M (consisting of original methods and
specialized instances), denoted F, M. A configuration F, M evolves to a new configuration F′, M′

by stepping F, M → F′, M′; every step processes the top instruction in F and possibly compiles
new method instances into M′. Notably, due to the so-called world-age mechanism [Belyakova
et al. 2020] which restricts the effect of eval, source methods are fixed from the perspective of
compilation; only compiled instances changes.

4.1 Syntax

The syntax of Julesmethods is defined in Fig. 5. We use two key notational devices. First, sequences

are denoted · ; thus, ty stands for types ty0 . . . ty𝑛 , %k for registers %k0 . . . %k𝑛 , and st for instructions

st0 . . . st𝑛 . An empty sequence is written 𝜖 . Second, indexing is denoted [·]; ty[k] is the 𝑘-th type
in ty (starting from 0), %j[k] is the 𝑘-th field of %j, andM[m!ty] indexesM by method signature
where m denotes method name and ty denotes argument types.

ty ::= type

| T concrete type

| A abstract type

D ::= type table
(

T!ty <: A
)

∗

M ::= method table
(

⟨m!ty′ st, ty⟩
)

∗

st ::= instruction

| %i← p int. assignment

| %i← %j reg. transfer

| %i← T(%k) allocation

| %i← %j[k] field access

| %i← %j ? m(%k) : %l dispatched call

| %i← %j ? m!T(%k) : %l direct call

𝑖 ∈ N, p ∈ Z

Fig. 5. Syntax of Jules

Types ty live in the immutable type table D, which contains both concrete (T) and abstract (A)
types. Each type table entry is of the form T!ty <: A, introducing concrete type T, with fields of
types ty, along with the single supertype A. Two predefined types are the concrete integer type Int,
and the universal abstract supertype Any.

Method tables M contain method definitions of two sorts: first, original methods that come from
source code; second, method instances compiled from original methods. To distinguish between
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the two sorts, we store the type signature of the original method in every table entry. Thus, table

entry ⟨m!ty′ st, ty⟩ describes a method m with parameter types ty′ and the body comprised of

instructions st; type signature ty points to the original method. If ty is equal to ty′, the entry defines

an original method, and st cannot contain direct calls.3 Otherwise, ty′ denotes some concrete

types T, and the entry defines a method instance compiled from m!ty, specialized for concrete

argument types T <: ty. Method table may contain multiple method definitions with the same
name, but they have to have distinct type signatures.
Method bodies consist of instructions st. An instruction %i ← op consists of an operation op

whose result is assigned to register %i. An instruction can assign from a primitive integer p, another

register %j, a newly created struct T(%k) of type T with field values %k, or the result of looking up a
struct field as %j[k]. Finally, the instruction may perform a function call. Calls can be dispatched,

m(%k), where the target method is dynamically looked up, or they can be direct, m!T(%k), where
the target method is specified. All calls are conditional: %j ? call : %l, to allow for recursive
functions. If the register %j is non-zero, then call is performed. Otherwise, the result is the value of
register %l. Conditional calls can be trivially transformed into unconditional calls; in examples, this
transformation is performed implicitly.

4.2 Dynamic Semantics

Jules is parameterized over three components: method dispatch D, type inference I, and just-in-
time compilation jit. We do not specify how the first two work, and merely provide their interface
and a set of criteria that they must meet (in sections 4.2.2 and 4.2.3, respectively). The compiler, jit,
is instantiated with either the identity function, which gives a regular non-optimizing semantics,
or an optimizing compiler, which is defined in section 4.2.5. The optimizing compiler relies on type
inference I to devirtualize method calls. Type inference also ensures well-formedness of method
tables. Method dispatch D is used in operational semantics.

4.2.1 Operational Semantics. Fig. 6 gives rules for the dynamic semantics. Given a type table D as
context, Jules can step a configuration F, M to F′, M′, written as F, M → F′, M′. Stack frames
F consist of a sequence of environment-instruction list pairs. Thus, E st · F denotes a stack with
environment E and instructions st on top, followed by a sequence of environment-instruction pairs.
Each environment is a list of values E = v, representing contents of the sequentially numbered
registers. Environments can then be extended as E + v, indexed as E[k], and their last value is
last (E) if E is not empty.
The small-step dynamic semantics is largely straightforward. The first four rules deal with

register assignment: updating the environment with a constant value (Prim), the value in another
register (Reg), a newly constructed struct (New), or the value in a field (Field). The remaining

five rules deal with function calls, either dispatched m(%k) or direct m!T(%k). Call instructions
are combined with conditioning: a call can only be made after testing the register %j, called a
guard register. If the register value is zero, then the value of the alternate register %l is returned
(False1/False2). Otherwise, the call can proceed, by Disp for dispatched calls and Direct for direct
ones. A dispatched call starts by prompting the JIT compiler to specialize method m from the

method tableM with the argument types T and produce a new method tableM′. Next, using the

new tableM′, the dispatch mechanism D determines the method to invoke. Finally, the body st′

of the method and call arguments E[k] form a new stack frame for the callee, and the program

steps with the extended stack and the new table. Direct calls are simpler because a direct call m!T
uniquely identifies the method to invoke. Thus, the method’s instructions are looked up inM by

3All function calls in Julia source code are dispatched calls.
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v ::= p | T(v) E ::= v F ::= 𝜖 | E st · F

Prim
st = %i← p

E′ = E + p

E st st · F, M → E′ st · F, M

Reg
st = %i← %j

E′ = E + E[j]

E st st · F, M → E′ st · F, M

New

st = %i← T(%k)

E′ = E + T(E[k])

E st st · F, M → E′ st · F, M

Field
st = %i← %j[k]

v = E[j] E′ = E + v[k]

E st st · F, M → E′ st · F, M

False1

st = %i← %j ? m(%k) : %l

0 = E[j] E′ = E + E[l]

E st st · F, M → E′ st · F, M

False2

st = %i← %j ? m!T(%k) : %l

0 = E[j] E′ = E + E[l]

E st st · F, M → E′ st · F, M

Disp

st = %i← %j ? m(%k) : %l

0 ≠ E[j] T = typeof (E[k]) M′ = jit (M,m, T)

st′ = body(D(M′,m, T)) E′ = E[k]

E st st · F, M → E′ st′ · E st st · F, M′

Direct

st = %i← %j ? m!T(%k) : %l

0 ≠ E[j]

st′ = body(M[m!T]) E′ = E[k]

E st st · F, M → E′ st′ · E st st · F, M

Ret
E′′ = E + last (E′)

E′ 𝜖 · E st st · F, M → E′′ st · F, M

Fig. 6. Dynamic semantics of Jules

the method signature, a new stack frame is created, and the program steps with the new stack
and the same method table. The top frame without instructions to execute indicates the end of a
function call (Ret): the last value of the top-frame environment becomes the return value of the
call, and the top frame is popped from the stack.
Program execution begins with the frame 𝜖 main()4, i.e. a call to the main function with an

empty environment; the execution either diverges, finishes with a final configuration E 𝜖 , or runs
into an error. We define two notions of error. An err occurs only in the Disp rule, when the dispatch
function D is undefined for the call; the err corresponds to a dynamic-dispatch error in Julia. A
configuration is wrong if it cannot make a step for any other reason.

Definition 4.1 (Errors). A non-empty configuration F, M that cannot step F,M → F′,M′ has

erred if its top-most frame, E st, starts with %i← %j ? m(%k) : %l, where T is the types of %k in E,

m ∈ M, and D(M,m, T) is undefined. Otherwise, F, M is wrong.

4.2.2 Dispatch. Jules is parametric over method dispatch: any mechanism D that satisfies the
Dispatch Contract (Def. 4.2) can be used. Julia’s method dispatch mechanism is designed to, given
method table, method name, and argument types, return the most specific method applicable to the
given arguments if such a method exists and is unique. First, applicable methods are those whose
declared type signature is a supertype of the argument type. Then, the most specific method is the
one whose type signature is the most precise. Finally, only one most specific applicable method
may exist, or else an error is produced. Each of these components appears in our dispatch definition.
As in Julia, dispatch is only defined for tuples of concrete types.

4Recall that unconditional calls are implicitly expanded into conditional ones.
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Definition 4.2 (Dispatch Contract). The dispatch function D(M,m, T) takes method table M,

method name m, and concrete argument types T, and returns a method m!ty st ∈ M such that the

following holds (we write ty <: ty′ as a shorthand for ∀𝑖 . ty𝑖 <: ty
′
𝑖 ):

(1) T <: ty, meaning that m!ty is applicable to the given arguments;

(2) ∀m!ty′ st ∈ M. T <: ty′ =⇒ ty <: ty′, meaning that m!ty is the most specific applicable
method.

4.2.3 Inference. The Julia compiler infers types of variables by forward data-flow analysis. Like dis-
patch, inference is complex, so we parameterize over it. For our purposes, an inference algorithm I

returns a sound typing for a sequence of instructions in a given method table, I(⌊M⌋, ty, st) = ty′,
where ⌊M⌋ denotes the table containing only methods without direct calls. Inference returns types

ty
′
such that each ty′𝑖 is the type of register of st𝑖 . Any inference algorithm that satisfies the

Soundness and Monotonicity requirements is acceptable.

Reqirement 4.1 (Soundness). If I(M, ty, st) = ty′, then for any environment E compatible with
ty, that is, typeof (𝐸𝑖 ) <: ty𝑖 , and for any stack F, the following holds:

(1) If E st · F, M →∗ F′ · F,M′ and cannot make another step, then F′ · F,M′ has erred.

(2) If E st · F, M →∗ E E′ st′′ · F, M′, then st = st′ st′′ and typeof (E′𝑖 ) <: ty
′
𝑖 .

The soundness requirement guarantees that if type inference succeeds on a method, then, when
the method is called with compatible arguments, it will not enter a wrong state but may err at
a dynamic call. Furthermore, if the method terminates, all its instructions evaluate to values
compatible with the results of type inference. That is, when E st · F, M →∗ E E′ 𝜖 · F, M′, we have

typeof (E′) <: ty′.
The second requirement of type inference, monotonicity, is important to specialization: it guar-

antees that using more precise argument types for original method bodies succeeds and does not
break assumptions of the caller about the callee’s return type. If inference was not monotonic, then
given more precise argument types, it could return a method specialization with a less precise
return type. As a result, translating a dynamically dispatched call into a direct call may be unsound.

Reqirement 4.2 (Monotonicity). For allM, ty, st, ty′, such that I(M, ty, st) = ty′,

∀ ty′′. ty′′ <: ty =⇒ ∃ty′′′. I(M, ty′′, st) = ty′′′ ∧ ty′′′ <: ty′.

4.2.4 Well-Formedness. Initial Jules configuration 𝜖 main(), M is well-formed if the method table
M is well-formed according to Def. 4.3. Such a configuration will either successfully terminate, err,
or run forever, but it will never reach a wrong state.

Definition 4.3 (Well-Formedness of Method Table). A method table is well-formed WF (M) if the
following holds:

(1) Entry method main!𝜖 belongs to M.
(2) Every type ty inM, except Int and Any, is declared in D.
(3) Registers are numbered consecutively from 0, increasing by one for each parameter and

instruction. An instruction assigning to %k only refers to registers %i such that 𝑖 < 𝑘 .
(4) For any original method ⟨m!ty st, ty⟩ ∈ M, the body is not empty and does not contain direct

calls, and type inference succeeds I(⌊M⌋, ty, st) = ty′ on original methods ⌊M⌋.

(5) Any two methods inM with the same name, m!ty and m!ty′, have distinct type signatures,

i.e. ty ≠ ty′.

(6) For any method specialization ⟨m!ty′, ty⟩ ∈ M, i. e. ty′ ≠ ty, the following holds: ty′ = T, and

T <: ty, and ⟨m!ty, ty⟩ ∈ M. Moreover, ∀m!ty
′′
∈ M. T <: ty′′ =⇒ ty <: ty′′.
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m!T ∉ M st = body(D(M,m, T)) ty′ = I(⌊M⌋, T, st)

ty = signature(D(M,m, T)) M0 = M + ⟨m!T𝜖, ty⟩

T ty′ ⊢ st0,M0 { st′0,M1 . . . T ty′ ⊢ st𝑛,M𝑛 { st′𝑛,M𝑛+1 M′ = M𝑛+1 [m!T ↦→ ⟨m!T st′, ty⟩]

jit (M,m, T) = M′

m!T ∈ M

jit (M,m, T) = M

st = %i← %j ? m(%k) : %l T = ty[k]

M′ = jit (M,m, T) st′ = %i← %j ? m!T(%k) : %l

ty ⊢ st,M { st′,M′

st ≠ %i← %j ? m(%k) : %l

or T ≠ ty[k]

ty ⊢ st,M { st,M

Fig. 7. Compilation: extending method table with a specialized method instance (top rule) and replacing

a dynamically dispatched call with a direct method invocation in the extended table (bottom-right)

The last requirement ensures that only the most specific original methods have specializations,
which precludes compilation from modifying program behavior. For example, consider type hi-
erarchy Int<:Number<:Any and function f with original methods for Any and Number. If there are
no compiled method instances, the call f(5) dispatches to f(::Number). But if the method table
contained a specialized instance f(::Int) of the original method f(::Any), the call would dispatch
to that instance, which is not related to the originally used f(::Number). Thus, program behavior
would be modified by compilation, which is undesired.

4.2.5 Compilation. Jules implements devirtualization through the jit (M,m, T) operation, shown in
Fig. 7. The compiler specializes methods according to the inferred type information, replacing non-
err dispatched calls with direct calls where possible. Compilation begins with some bookkeeping.
First, it ensures that there is no pre-existing instance in themethod table before compiling; otherwise,
the table is returned immediately without modification, by the bottom-left rule. Next, using dispatch,
it fetches the most applicable original method to compile. Then, using concrete argument types,
the compiler runs the type inferencer on the method’s body, producing an instruction typing

ty′. Because the original method table is well-formed, monotonicity of I and the definition of

D guarantee that type inference succeeds for T <: ty. Lastly, the compiler can begin translating
instructions. Each instruction st𝑖 is translated into an optimized instruction st′𝑖 . This translation

respects the existing type environment containing the argument types T and instruction typing

ty′. The translation ty ⊢ st,M { st′,M′ leaves all instructions unchanged except dispatched
calls. Dispatched calls cause a recursive JIT invocation, followed by rewriting to a direct call. To

avoid recursive compilation, a stub method ⟨m!T𝜖, ty⟩ is added at the beginning of compilation,
and over-written when compilation is done. As the source program is finite and new types are not
added during compilation, it terminates. Note that if the original method has concrete argument
types, the compiler does nothing.

4.3 Type Groundedness and Stability

We now formally define the properties of interest, type stability and type groundedness. Recall the
informal definition which stated that a function is type stable if its return type depends only on its
argument types, and type grounded if every variable’s type depends only on the argument types.
In this definition, łtypesž really mean concrete types, as concrete types allow for optimizations.
The following defines what it means for an original method to be type stable and type grounded.

Definition 4.4 (Stable and Grounded). Let m!ty st be an original method in a well-formed method

tableM. Given concrete argument types T <: ty, if I(⌊M⌋,m, T) = ty′, and
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D-NoCall
st ≠ %i← %j ? m(%k) : %l st ≠ %i← %j ? m!T(%k) : %l

ty ⊢DM st

D-Disp

st = %i← %j ? m(%k) : %l T ≠ ty[k]

ty ⊢DM st

D-Direct
st = %i← %j ? m!T(%k) : %l T = ty[k] m!T ∈ M

ty ⊢DM st

D-Seq

ty ⊢DM st0 . . . ty ⊢DM st𝑛

ty ⊢DM st

D-Table
∀⟨m!T st′, ty⟩ ∈ M. T ≠ ty ∧ st′ ≠ 𝜖 =⇒ m!ty st ∈ M ∧ ty′ = I(⌊M⌋, T, st) ∧ T ty′ ⊢DM st′

⊢D M

Fig. 8. Maximal devirtualization of instructions and method tables

(1) last (ty′) = T′, i.e. the return type is concrete, then the method is type stable for T,

(2) ty′ = T′, i.e. all register types are concrete, then the method is type-grounded for T.

Furthermore, a method is called type stable (grounded) for a set𝑊 of concrete argument types if it

is type stable (grounded) for every T ∈𝑊 .

As all method instances are compiled from some original method definitions, type stabiltiy and
groundedness for instances is defined in terms of their originals.

Definition 4.5. A method instance ⟨m!T st′, ty⟩ is called type stable (grounded), if its original

method m!ty is type stable (grounded) for T.

4.3.1 Full Devirtualization. The key property of type groundedness is that compiling a type-

grounded method results in a fully devirtualized instance. We say that a method instance m!T st is
fully devirtualized if st does not contain any dispatched calls. To show that jit indeed has the above
property, we will need an additional notion, maximal devirtualization, which is defined in Fig. 8.
Intuitively, the predicate ty ⊢D

M
st states that an instruction st does not contain a dispatched

call that can be resolved in table M for argument types found in ty. Then, a method instance
is maximally devirtualized if this predicate holds for every instruction using ty that combines
argument types with the results of type inference.

Next, we review the definition from Fig. 8 in more details. D-NoCall states that an instruction
without a call is maximally devirtualized. D-Disp requires that for a dispatched call, ty does not
have precise enough type information to resolve the call with D. Finally, D-Direct allows a direct
call to a concrete method with the right type signature: as concrete types do not have subtypes, the

m!T with concrete argument types is exactly the definition that a call m(%k) would dispatch to.
D-Seq simply checks that all instructions in a sequence st are devirtualized in the same register
typing ty. Here, ty has to contain typing for all instructions st𝑖 , because later instructions refer
to the registers of the previous ones. The last rule ⊢D M covers the entire table M, requiring
all methods to be maximally devirtualized. Namely, D-Table says that for all method instances

(condition T ≠ ty implies that m!T is not an original method) that are not stubs (st′ ≠ 𝜖), the body
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C-NoDisp

st ≠ %i← %j ? m(%k) : %l

ty ⊢ st, M { st, M

C-Disp

st = %i← %j ? m(%k) : %l T ≠ ty[k]

ty ⊢ st, M { st, M

C-Direct
st = %i← %j ? m(%k) : %l T = ty[k] m!T ∈ M st′ = %i← %j ? m!T(%k) : %l

ty ⊢ st, M { st′, M

C-Instance

st = %i← %j ? m(%k) : %l T = ty[k] m!ty′ st = D(M,m, T) T ≠ ty′

ty′′ = I(⌊M⌋, T, st) M0 = M + ⟨m!T𝜖, ty′⟩

T ty′′ ⊢ st0, M0 { st′0, M1 . . . T ty′′ ⊢ st𝑛, M𝑛 { st′𝑛, M𝑛+1

st′ = %i← %j ? m!T(%k) : %l M′ = M𝑛+1 + ⟨m!T st′, ty′⟩

ty ⊢ st, M { st′, M′

Fig. 9. Reformulated compilation

st′ is maximally devirtualized according to the typing of the original method with respect to the
instance’s argument types.
Using the notion of maximal devirtualization, we can connect type groundedness and full

devirtualization.

Lemma 4.6 (Full Devirtualization). If M is well-formed and maximally devirtualized, then any

type-grounded method instance m!T st′ ∈ M is fully devirtualized.

Proof. Follows from the definitions of type groundedness and maximal devirtualization; details
can be found in the extended version [Pelenitsyn et al. 2021b]. □

The final step is to show that compilation defined in Fig. 7 preserves maximal devirtualization.
To simplify the proof, Fig. 9 reformulates Fig. 7 by inlining jit into the compilation relation. The
relation does not have a rule for processing direct calls because we compile only original methods.
Since the set of method instances is finite, the relation is well-defined: every recursive call to
compilation happens for a method table that contains at least one more instance. Every compilation
step produces a maximally devirtualized instruction and potentially extends the method table with
new maximally devirtualized instances.

Lemma 4.7 (Preserving Well Formedness). For any method tableM that is well-formed WF (M),
register typing ty, and instruction st, if the instruction st is compiled, ty ⊢ st, M { st′, M′, then
the new table is well-formed WF (M′).

Proof. By induction on the derivation of ty ⊢ st, M { st′, M′. The only case that modifies
the method table is C-Instance. There, by analyzingM0, we can see that it is well-formed, and

thus the induction hypothesis can be applied to T ty′′ ⊢ st0, M0 { st′0, M1, and then to all

T ty′′ ⊢ st𝑖 , M𝑖 { st′𝑖 , M𝑖+1. Since M𝑛+1 is well-formed, so is M′. More details are available in
the extended version [Pelenitsyn et al. 2021b]. □

Lemma 4.8 (Preserving Maximal Devirtualization). For any well-formed method table M,
register typing ty, and instruction st, if the method table is maximally devirtualized, ⊢D M, and the
instruction st is compiled, ty ⊢ st, M { st′, M′, then the following holds:

(1) the resulting instruction is maximally devirtualized in the new table, ty ⊢D
M′

st′,
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(2) the new table is maximally devirtualized, ⊢D M′,
(3) any maximally devirtualized instruction stays maximally devirtualized in the new table,

∀ ty𝑥 , st𝑥 . ty𝑥 ⊢D
M

st𝑥 =⇒ ty𝑥 ⊢D
M′

st𝑥 .

Proof. By induction on the derivation of ty ⊢ st, M { st′, M′. The most interesting case is
C-Instance where compilation of additional instances happens. The key step of the proof is to

observe that the induction hypothesis is applicable to T ty′′ ⊢ st0, M0 { st′0, M1, and then to all

consecutive T ty′′ ⊢ st𝑖 , M𝑖 { st′𝑖 , M𝑖+1, which is possible due to Lem. 4.7 and facts (2). Using
facts (3), we propagate the information about maximal devirtualization of st𝑖 in their respective
tables to the finalM′. A complete proof is available in [Pelenitsyn et al. 2021b]. □

Putting it all together, we have shown that type-grounded methods compile to method instances
without dynamically dispatched calls. Namely, since a well-formed original table is trivially
maximally devirtualized, and compilation preserves this property by Lem. 4.8, executing a well-
formed program results in a method table where all method instances are maximally devirtualized.
Furthermore, type-grounded instances are fully devirtualized by Lem. 4.6, and thus do not contain
dispatched calls.

Theorem 4.9 (Grounded Methods Never Dispatch). For any initial well-formed M, if

𝜖 main(), M →∗ E (%i← %j ? m!T(%k) : %l) st · F, M′ ∧ m!T is type-grounded inM′,

then m!T is fully devirtualized in M′.

4.3.2 Relationship between Stability and Groundedness. While it is type groundedness that enables
devirtualization, the weaker property, type stability, is also important in practice. Namely, stability
of calles is crucial for groundedness of the caller if the type inference algorithm analyzes function
calls using nothing but type information about the arguments. (A formal definition and a proof of
this property can be found in the extended version [Pelenitsyn et al. 2021b].) A more powerful type
inference algorithm might be able to work around unstable methods in some cases, but even then,
stability would be needed in general.
As an example, consider two type-unstable callees that return either an integer or a string

depending on the argument value, f(x) = (x>0) ? 1 : "1" and g(x) = (rand()>x)? 1 : "1", and two
calls, f(y) and g(y), where y is equal to 0.5. If only type information about y is available to type
inference, both f(y) and g(y) are deemed to have abstract return types. Therefore, the results of
such function calls cannot be stored in concretely typed registers, which immediately makes the
calling code ungrounded. If type inference were to analyze the value of y (not just its type), the
result of f(y) could be stored in a concrete, integer-valued register, as only the first branch of f
is known to execute. However, the other call, g(y), would still have to be assigned to an abstract
register. Thus, to enable groundedness and optimization of the client code regardless of the value
of argument x, f(x) and g(x) need to be type-stable.
Note that stability is a necessary but not sufficient condition for groundedness of the client, as

conditional branches may lead to imprecise types, like in the f0 example from Fig. 3.

4.4 Correctness of Compilation

In this section, we prove that evaluating a program with just-in-time compilation yields the
same result as if no compilation occurred. We use two instantiations of the Jules semantics, one
(written →D ) where jit is the identity, and the other (written →JIT ) where jit is defined as before.
Our proof strategy is to

(1) define the optimization relation ⊲ which relates original and optimized code (Fig. 10),
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OI-Refl

ty ⊢M,M′ st ⊲ st

OI-Direct
st = %i← %j ? m(%k) : %l T = ty[k]

signtr (D(M,m, T)) = o-signtr (M′[m!T])

st′ = %i← %j ? m!T(%k) : %l

ty ⊢M,M′ st ⊲ st′

OI-Seq

ty ⊢M,M′ st0 ⊲ st′0
. . .

ty ⊢M,M′ st𝑛 ⊲ st′𝑛

ty ⊢M,M′ st ⊲ st′

O-Table
M = ⌊M′⌋ ∀⟨m!T st′, ty⟩, ⟨m!ty st, ty⟩ ∈ M′, s.t. T ≠ ty, st′ ≠ 𝜖.

ty′ = I(M, T, st) T ty′ ⊢M,M′ st ⊲ st′

M ⊲M′

Δ ::= 𝜖 | ty · Δ′ stack typing

O-StackEmpty

𝜖 ⊢M,M′ 𝜖 ⊲ 𝜖

O-Stack

ty ⊢M,M′ st ⊲ st′ Δ ⊢M,M′ F ⊲ F′

ty · Δ ⊢M,M′ (E st) · F ⊲ (E st′) · F′

I-StackEmpty

⊢IM 𝜖 <: 𝜖

I-Stack

∃m!ty′ st𝑏 ∈ M. E = E′E′′ F ≠ 𝜖 =⇒ F, M→D E′ st𝑏 · F, M

E′ st𝑏 · F, M→
∗
D E st · F, M T = typeof (E′) ty′′ = I(M, T, st𝑏 )

T <: ty′ T ty′′ <: ty ⊢IM F <: Δ

⊢IM (E st) · F <: ty · Δ

O-Config

⊢IM F <: Δ Δ ⊢M,M′ F ⊲ F′ M ⊲M′

F, M ⊲ F′, M′ <: Δ

Fig. 10. Optimization relation for instructions, method tables, stacks, and configurations

(2) show that compilation from Fig. 9 does produce optimized code (Thm. 4.12),
(3) show that evaluating a program with →JIT or →D gives the same result (Thm. 4.15).

The main Thm. 4.15 is a corollary of bisimulation between →D and →JIT (Lem. 4.14). The
bisimulation lemma uses Thm. 4.12 but otherwise, it has a proof similar to the proof of bisimulation
between original and optimized code both running with →D (Lem. 4.10). A corollary of the
latter bisimulation lemma, Thm. 4.11, shows the correctness of jit as an ahead-of-time compilation
strategy.

First, Fig. 10 defines optimization relations for instructions, method tables, stacks, and configura-
tions. According to the definition of M ⊲M′, method table M′ optimizes M if (1) it has all the same
original methods5, and (2) bodies of compiled method instances optimize the original methods
using more specific type information available to the instance. These requirements guarantee that
dispatching in an original and optimized method tables will always resolve to related methods.
Optimization of instructions only allows for replacing dynamically dispatched calls with direct calls
in the optimized table. Optimization of stacks ensures that for all frames, instructions are optimized
accordingly, and requires all value environments to coincide. The first premise of configuration
optimization O-Config guarantees that the original configuration F, M is obtained by calling

5 ⌊M′⌋ denotes the method table containing all original methods ofM′ without compiled instances.
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methods from the original method table M, and bodies of those methods are amenable to type
inference. Based on the results of type inference, stacks F, F′ need to be related in method tables
M,M′, and the method tables themselves also need to be related.

As we show below, when run with the dispatch semantics, related configurations are guaranteed
to run in lock-step and produce the same result.

Lemma 4.10 (Bisimulation of Related Configurations). For any well-formed method tablesM
andM′ (i.e. WF (M),WF (M′) according to Def. 4.3) whereM′ does not have stubs (i.e. all method bodies
≠ 𝜖), any stacks F1, F

′
1, and stack typing Δ1 that relates the configurations, F1, M ⊲ F′1, M

′
<: Δ1,

the following holds:

(1) Forward direction:

F1, M→D F2, M =⇒ ∃F′2,Δ
′
1 . F′1, M

′→D F′2, M
′ ∧ F2, M ⊲ F′2, M

′
<: Δ

′
1.

(2) Backward direction:

F′1, M
′→D F′2, M

′
=⇒ ∃F2,Δ

′
1. F1, M→D F2, M ∧ F2, M ⊲ F′2, M

′
<: Δ

′
1.

Proof. For both directions, the proof goes by case analysis on the optimization relation for
configurations and case analysis on the step of execution. The most interesting cases are the
ones where F1, M steps by Disp, with F′1, M

′ stepping by Disp or Direct. The key observation
is that because of well-formedness of method tables and M ⊲ M′, the optimized configuration
F′1, M

′ correctly dispatches or directly invokes a specialized method instance of the same original
method that F1, M dispatches to. A complete proof is available in the extended version of the
paper [Pelenitsyn et al. 2021b]. □

Theorem 4.11 (Correctness of Optimized Method Table). For any well-formed method tables
M andM′ where (1)M ⊲M′, (2) table M′ does not have stubs, and (3) ⟨main!𝜖 st, 𝜖⟩ ∈ M,

𝜖 st, M→∗D E 𝜖, M ⇐⇒ 𝜖 st, M′→∗D E 𝜖, M′,

i.e. program st runs to the same final value environment in both tables.

Proof. This is a corollary of Lem. 4.10; detailes are in [Pelenitsyn et al. 2021b]. □

Next, we show that compilation as defined in Fig. 9 produces optimized code in an optimized
method table according to Fig. 10.

Theorem 4.12 (Compilation Satisfies Optimization Relation). For any well-formed method
tablesM and M′, typing ty, and instruction st, such that

M ⊲M′ ∧ ty ⊢ st, M′ { st′′, M′′,

it holds that:

(1) ty ⊢M,M′′ st ⊲ st′′,

(2) M ⊲M′′,

(3) and the optimization relation on M,M′ is preserved onM,M′′:

∀ty𝑥 , st𝑥 , st𝑦 . ty𝑥 ⊢M,M′ st𝑥 ⊲ st𝑦 =⇒ ty𝑥 ⊢M,M′′ st𝑥 ⊲ st𝑦 .

Proof. By induction on the derivation of ty ⊢ st, M′ { st′′, M′′. Similar to the proof of
Lem. 4.8 on maximal devirtualization, the most interesting case is C-Instancewhere compilation of
additional instances happens. The key step of the proof is to observe that the induction hypothesis

is applicable to T ty′′ ⊢ st0, M0 { st′0, M1, and then, using facts (2) and Lem. 4.7, to all

T ty′′ ⊢ st𝑖 , M𝑖 { st′𝑖 , M𝑖+1. Using facts (3), we can propagate the information about optimization
of st𝑖 , st

′
𝑖 and respective tablesM𝑖 to the finalM

′′. A complete proof is available in the extended
version [Pelenitsyn et al. 2021b]. □
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Finally, using an auxiliary lemma about preserving stub methods during compilation, we can
show that the JIT-compilation semantics is equivalent to the dispatch semantics.

Lemma 4.13 (Preserving Stubs). For any well-formed method tables M′ and M′′, typing ty, and
instruction st, such that

ty ⊢ st, M′ { st′′, M′′,

it holds that

{T | m!T 𝜖 ∈ M′} = {T | m!T 𝜖 ∈ M′′},

i.e. the set of stubbed method instances is preserved by a compilation step.

Proof. By induction on the derivation of ty ⊢ st, M′ { st′′, M′′, similar to the proof of
Lem. 4.7 on well formedness [Pelenitsyn et al. 2021b]. □

Lemma 4.14 (Bisimulation of Related Configurations with Dispatch and JIT Semantics).

For any well-formed method tables M and M′ where M′ does not have stubs, any frame stacks F1, F
′
1,

and stack typing Δ1, such that F1, M ⊲ F′1, M
′
<: Δ1, the following holds:

(1) Forward direction:

F1, M→D F2, M =⇒ ∃F′2,M
′′,Δ′1. F′1, M

′→JIT F
′
2, M

′′ ∧ F2, M ⊲ F′2, M
′′

<: Δ
′
1 .

(2) Backward direction:

F′1, M
′→JIT F

′
2, M

′′
=⇒ ∃F2,Δ

′
1. F1, M→D F2, M ∧ F2, M ⊲ F′2, M

′′
<: Δ

′
1 .

Furthermore, M′′ is well-formed and does not have stubs.

Proof. By case analysis on the derivation of optimization F1, M ⊲ F′1, M
′

<: Δ1 and case
analysis on the step (→D for the forward and →JIT for the backward direction), similarly to the
proof of bisimulation for the dispatch semantics (Lem. 4.10). The only difference appears in cases
where F′1, M

′ steps by Disp: these are the only places where JIT compilation fires andM′′ might be
different fromM′. The key observation is that compilation producesM′′ which (1) optimizesM
by Thm. 4.12, M ⊲M′′, (2) is well-formed by Lem. 4.7, and (3) does not contain stubs by Lem. 4.13.
More details are available in the extended version of the paper [Pelenitsyn et al. 2021b]. □

Theorem 4.15 (Correctness ot JIT). For any original well-formed method table M the following
holds:

𝜖 st, M→∗D E 𝜖, M ⇐⇒ 𝜖 st, M→∗JIT E 𝜖, M′,

i.e. program st runs to the final environment E with the dispatch semantics →D if and only if it runs
to the same environment with the JIT-compilation semantics →JIT .

Proof. This is a corollary of Lem. 4.14. Be reflexivity of the optimization relation and well-
formedness ofM, we know: st, M ⊲ st, M <: ty, where ty = I(M, 𝜖, st). SinceM does not have
stubs, the bisimulation lemma is applicable: if one of the configurations can make a step, so does
the other, and the step leads to a pair of related configurations such that the lemma can be applied
again. If the program terminates and does not err, both sides arrive to final configurations where
environments are guaranteed to coincide by O-Stack. □
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5 EMPIRICAL STUDY

Anecdotal evidence suggests that type stability is discussed in the Julia community, but does Julia
code exhibit the properties of stability and groundedness in practice? And if so, are there any
indicators correlated with instability and ungroundedness? To find out, we ran a dynamic analysis
on a corpus of Julia packages. All the packages come from the main language registry and are
readily available via Julia’s package manager; registered packages have to pass basic sanity checks
and usually have a test suite.
The main questions of this empirical study are:

(1) How uniformly are type stability and groundedness spread over Julia packages? How much
of a difference can users expect from different packages?

(2) Are package developers aware of type stability?
(3) Are there any predictors of stability and groundedness in the code and do they influence how

type-stable code looks?

5.1 Methodology

We take as our main corpus the 1000 most starred (using GitHub stars) packages from the Julia
package registry; as of the beginning of 2021, the registry contained about 5.5K packages. The main
corpus is used for an automated, high-level, aggregate analysis. We also take the 10 most starred
packages from the corpus to perform finer-grained analysis and manual inspection. Out of the
1000 packages in the corpus, tests suits of only 760 succeeded on Julia 1.5.4, so these 760 comprise
our final corpus. The reasons of failures are diverse, spanning from missing dependencies to the
absence of tests, to timeout.

For every package of interest, the dynamic analysis runs the package test suite, analyzes compiled
method instances, and records information relevant to type stability and groundedness. Namely,
once a test suite runs to completion, we query Julia’s virtual machine for the current set of available
method instances, which represent instances compiled during the tests’ execution. To avoid bias
towards the standard library, we remove instances of methods defined in standard modules, such as
Base, Core, etc., which typically leaves uswith several hundreds to several thousands of instances. For
these remaining instances, we analyze their type stability and groundedness. As type information is
not directly available for compiled, optimized code, we retrieve the original method of an instance
and run Julia’s type inferencer to obtain each register’s type, similarly to the Jules model. In rare
cases, type inference may fail; on our corpus, this almost never happened, with at most 5 failures
per package. With the inference results at hand, we check the concreteness of the register typing
and record a yes/no answer for both stability and groundedness. In addition to that, several metrics
are recorded for each method: method size, the number of gotos and returns in the body, whether
the method has varargs or @nospecialize arguments6, and how polymorphic the method is, i.e. how
many instances were compiled for it. This information is then used to identify possible correlations
between the metrics and stability/groundedness.
To get a better understanding of type stability and performance, we employ several additional

tools to analyze the 10 packages. For example, we look at their documentation, especially at the
stated goals and domain of a package, and check the Git history to see if and how type stability is
mentioned in the commits.

5.2 Package-Level Analysis

The aggregate results of the dynamic analysis for the 760 packages are shown in Table 1: 74% of
method instances in a package are stable and 57% grounded, on average; median values are close to

6@nospecialize tells the compiler to not specialize for that argument and leave it abstract.
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Table 1. Aggregate statistics for stability and groundedness

Stable Grounded

Mean 74% 57%

Median 80% 57%

Std. Dev. 22% 24%

the means. The standard deviation is noticeable, so even on small samples of packages, we expect
to see packages with large deflections from the means.
A more detailed analysis of the 10 most starred packages, in alphabetical order, is shown in

Table 2. A majority of these packages have stability numbers very close to the averages shown
above, with the exception of Knet, which has only 16% of stable and 8% of grounded instances.

Table 2. Stability, groundedness, and polymorphism in 10 popular packages

Package Methods Instances Inst/Meth Varargs Stable Grounded

DifferentialEquations 1355 7381 5.4 3% 70% 44%

Flux 381 4288 11.3 13% 76% 70%

Gadfly 1100 4717 4.3 10% 81% 58%

Gen 973 2605 2.7 2% 64% 43%

Genie 532 1401 2.6 12% 93% 78%

IJulia 39 136 3.5 8% 84% 60%

JuMP 2377 36406 15.3 7% 83% 63%

Knet 594 9013 15.2 7% 16% 8%

Plots 1167 5377 4.6 8% 74% 58%

Pluto 727 2337 3.2 4% 80% 66%

The Knet package is a type stability outlier. A quick search over project’s documentation and
history shows that the only kind of stability ever mentioned is numerical stability; furthermore,
the word łperformancež is mostly used to reference the performance of neural networks or CUDA-
related utilities. Indeed, the package primarily serves as a communication layer for a GPU; most
computations are done by calling the CUDA API for the purpose of building deep neural networks.
Thus, in this specific domain, type stability of Julia code appears to be irrelevant.

On the other side of the stability spectrum is the 93% stable (78% grounded) Genie package, which
provides a web application framework. Inspecting the package, we can confirm that its developers
were aware of type stability and intentional about performance. For example, Genie’s Git history
contains several commits mentioning (improved) łtype stability.ž The project README file states
that the authors build upon

łJulia’s strengths (high-level, high-performance, dynamic, JIT compiled).ž

Furthermore, the tutorial claims:

łGenie’s goals: unparalleled developer productivity, excellent run-time performance.ž

Type stability (non-)correlates. One parameter that we conjectured may correlate with stability is
the average number of method instances per method (Inst/Meth column of Table 2), as it expresses
the amount of polymorphism discovered in a package. Most of the packages compile just 2ś4
instances per method on average, but Flux, JuMP, and Knet have this metric 5ś6 times higher,
with JuMP and Knet exploiting polymorphism the most, at 15.3 and 15.2 instances per method,
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respectively. The latter may be related to the very low type stability index of Knet. However, the
other two packages are more stable than the overall average. Analyzing JuMP and Flux further, we
order their methods by the number of instances. In JuMP, the top 10% of most instantiated methods
are 5% less stable and grounded than the package average, whereas in Flux, the top 10% have
about the same stability characteristics as on average. Overall, we cannot conclude that method
polymorphism is related to type stability.

Another dimension of polymorphism is the variable number of arguments in a method (Varargs
column of Table 2). We looked into three packages with a higher than average (9%) number of
varargs methods in the 10 packages: Flux, Gadfly and Genie. Relative to the total number of methods,
Flux has the most varargs methodsÐ13%Ðand those methods are only 55% stable and 44% grounded,
which is a significant drop of 21% and 26% below this package’s averages. However, the other two
packages have higher-than-package-average stability rates, 82% (Gadfly) and 99% (Genie), with
groundedness being high in Genie, 93%, and low in Gadfly, 38%. Again, no general conclusion about
the relationship between varargs methods and their stability can be made.

5.3 Method-Level Analysis

In this section, we inspect stability of individual methods in its possible relationship with other
code properties like size, control flow (number of goto and return statements), and polymorphism
(number of compiled instances and varargs). Our analysis consists of two steps: first, we plot
histograms showing the number of methods with particular values of properties, and second, we
manually sample some of the methods with more extreme characteristics.

5.3.1 Graphical Analysis. We use two-dimensional histograms like those presented in Fig. 11 to
discover possible relationships between stability of code and its other properties. The vertical axis
measures stability (on the left diagram) or groundedness (on the right): 1 means that all recorded
instances of a method are stable/grounded, and 0 means that none of them are. The horizontal axis
measures the property of interest; in the case of Fig. 11, it is method size (actual numbers are not
important here: they are computed from Julia’s internal representation of source code). The color
of an area reflects how many methods have characteristics corresponding to that area’s position on
the diagram; e.g. in Fig. 11, the lonely yellow areas indicate that there are about 500 (400) small
methods that are stable (grounded).

Fig. 11. Stability (left, OY axis) and groundedness (right, OY) by method size (OX) in Pluto

We generate graphs for all of the 10 packages listed in Table 2, for all combinations of the
properties of interest; the graphs are available in the extended version [Pelenitsyn et al. 2021b].
Most of the graphs look very similar to the ones from Fig. 11, which depicts PlutoÐa package for
creating Jupyter-like notebooks in Julia. In the following paragraphs, we discuss features of these
graphs and highlight the discrepancies.
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The first distinctive feature of the graphs is the hot area in the top-left corner: most of the
10 packages employ many small, stable/grounded methods; the bottom-left corner is usually the
second-most hot, so a significant number of small methods are unstable/ungrounded. For the Knet
package, these two corners are reversed; for DifferentialEquations, they are reversed only on the
groundedness plot. Both of these facts are not surprising after seeing Table 2, but having a visual
tool to discover such facts may be useful for package developers.
The second distinctive feature of these graphs is the behavior of large, ungrounded methods

(bottom-right part of the right-hand-side graph). The łtailž of large methods on the groundedness
graphs almost always lies below the 1-level; furthermore, larger methods tend to be less grounded.
However, if we switch from groundedness to stability plots, a large portion of the tail jumps to
the 1-level. This means larger methods are unlikely to be grounded (as expected, because of the
growing number of registers), but they still can be stable and thus efficiently used by other methods.
Pluto provides a good example of such a method: its explore! method of size 13003 (right-most
rectangle on Fig. 11, 330 lines in the source code) analyzes Julia syntax trees for scope information
with a massive if/else if/.. statement. This method has a very low chance of being grounded,
and it was not grounded on the runs we analyzed. However, the method has a concrete return type
annotation, so Julia (and the programmer) can easily see that it is stable.

In the case of the number of gotos and returns, the plots are largely similar to the ones for method
size, but they highlight one more package with low groundedness. Namely, the Gen package (aimed
at probabilistic inference [Cusumano-Towner et al. 2019]) has the hottest area in the bottom-left
corner, contrary to the first general property we identified for the size-based plots. Recall (Tables 1
and 2) that Gen’s groundedness is 14% less than the average on the whole corpus of 760 packages.

5.3.2 Manual Inspection. To better understand the space of stable methods, we performed a
qualitative analysis of a sample of stable methods that have either large sizes or many instances.

Many large methods have one common feature: they often have a return type ascription on the
method header of the form:
✞ ☎

function f(...) :: Int

...

end
✝ ✆

These ascriptions are a relatively new tool in Julia, and they are used only occasionally, in our
experience. An ascription makes the Julia compiler insert implicit conversions on all return paths of
the method. Conversions are user extendable: if the user defines type A, they can also add methods
of a special function convert for conversion to A. This function will be called when the compiler
expects A but infers a different type, for example, if the method returns B. If the method returns A,
however, then convert is a no-op.

Type ascriptions may be added simply as documentation, but they can also be used to turn type
instability into a run-time error: if the ascribed type is concrete and a necessary conversion is not
available, the method will fail. This provides a useful, if unexpected, way to assure that a large
method never becomes unstable.
While about 85% of type-stable methods in the top 10 packages are uninteresting in that they

always return the same type, sampling the rest illuminates a clear pattern: the methods resemble
what we are used to see in statically typed languages with parametric polymorphism. Below is a
list of categories that we identify in this family.

• Various forms of the identity functionÐa surprisingly popular function that packages keep
reinventing. In an impure language, such as Julia, an identity function can produce various
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side effects. For example, the Genie package adds a caching effect to its variant of the identity
function:
✞ ☎

# Define the secret token used in the app for encryption and salting.

function secret_token!(value::AbstractString=Generator.secret_token())

SECRET_TOKEN[] = value

return value

end
✝ ✆

• Container manipulations for various kinds of containers, such as arrays, trees, or tuples. For
instance, the latter is exemplified by the following function from Flux, which maps a tuple of
functions by applying them to the given argument:
✞ ☎

function extraChain(fs::Tuple, x)

res = first(fs)(x)

return (res, extraChain(Base.tail(fs), res)...)

end

extraChain(::Tuple{}, x) = ()
✝ ✆

• Smart constructors for user-defined polymorphic structures. For example, the following
convenience function from JuMP creates an instance of the VectorConstraint structure with
three fields, each of which is polymorphic:
✞ ☎

function build_constraint(_error::Function, Q::Symmetric{V,M}, ::PSDCone)

where {V<:AbstractJuMPScalar,M<:AbstractMatrix{V}}

n = LinearAlgebra.checksquare(Q)

shape = SymmetricMatrixShape(n)

return VectorConstraint(

vectorize(Q, shape),

MOI.PositiveSemidefiniteConeTriangle(n),

shape)

end
✝ ✆

• Type computationsÐan unusually wide category for a dynamically typed language. Thus, for
instance, the Gen package defines a type that represents generative functions in probabilistic
programming, and a function that extracts the return and argument types:
✞ ☎

# Abstract type for a generative function with return value type T and trace type U.

abstract type GenerativeFunction{T,U <: Trace} end

get_return_type(::GenerativeFunction{T,U}) where {T,U} = T

get_trace_type(::GenerativeFunction{T,U}) where {T,U} = U
✝ ✆

5.4 Takeaways

Our analysis shows that a Julia user can expect mostly stable (74%) and somewhat grounded (57%)
code in widely used Julia packages. If the authors are intentional about performance and stability,
as demonstrated by the Genie package, those numbers can be much higher. Although our sample
of packages is too small to draw strong conclusions, we suggest that several factors can be used
by a Julia programmer to pinpoint potential sources of instability in their package. For example,
in some cases, varargs methods might indicate instability. Large methods, especially ones with
heavy control flow, tend to not be type grounded but often are stable; in particular, if they always
return the same concrete type. Finally, although highly polymorphic methods are neither stable
nor unstable in general, code written in the style of parametric polymorphism often suggests type
stability.
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Our dynamic analysis and visualization code is written in Julia (and some bash code), and relies
on the vanilla Julia implementation. Thus, it can be employed by package developers to study type
instability in their code, as well as check for regressions.

6 RELATED WORK

Type stability and groundedness are the consequences of Julia’s compilation strategy put into
practice. The approach Julia takes is new and simpler than other approaches to efficient compilation
of dynamic code.

Attempts to efficiently compile dynamically dispatched languages go back nearly as far as dynam-
ically dispatched languages themselves. Atkinson [1986] used a combination of run-time-checked
user-provided types and a simple type inference algorithm to inline methods. Chambers and Ungar
[1989] pioneered the just-in-time model of compilation in which methods are specialized based on
run-time information. Hölzle and Ungar [1994] followed up with method inlining optimization
based on recently observed types at the call site. Rigo [2004] specialized methods on invocation
based on their arguments, but this was limited to integers. Similarly, Cannon [2005] developed
a type-inferring just-in-time compiler for Python, but it was limited by the precision of type in-
ference. Logozzo and Venter [2010] extended this approach with a more sophisticated abstract
interpretation-based inference system for JavaScript.
At the same time, trace-based compilers approached the problem from another angle [Chang

et al. 2007]. Instead of inferring from method calls, these compilers had exact type information
for variables in straight-line fragments of the program called traces. Gal et al. [2009] describes a
trace-based compiler for JavaScript that avoids some pitfalls of type stability, as traces can cross
method boundaries. However, it is more difficult to fix a program when tracing does not work well,
for the boundaries of traces are not apparent to the programmer.

Few of these approaches to compilation have been formalized. Guo and Palsberg [2011] described
the core of a trace-based compiler with two optimizations, variable folding and dead branch/store
elimination. Myreen [2010] formalized self-modifying code for x86. Finally, Flückiger et al. [2018]
formally described speculation and deoptimization and proved correctness of some optimizations;
Barriere et al. [2021] extended and mechanized these results.
The Julia compiler uses standard techniques, but differs considerably in how it applies them.

Many production just-in-time compilers rely on static type information when it is available, as
well as a combination of profiling and speculation [Duboscq et al. 2013; Würthinger et al. 2012].
Speculation allows these compilers to perform virtual dispatch more efficiently [Flückiger et al.
2020]. Profiling allows for tuning optimizations to a specific workload [Ottoni 2018; Xu et al. 2009],
eliminating overheads not required for cases observed during execution. Julia, on the other hand,
performs optimization only once per method instance. This presents both advantages and issues.
For one, Julia’s performance is more predictable than that of other compilers, as the warmup is
simple [Barrett et al. 2017]. Overall, Julia is able to achieve high performance with a simple compiler.

7 CONCLUSION

Julia’s performance is impressive, as it improves on that of a statically typed language such as Java,
whose compiler has been developed for two decades by an army of engineers. This is achieved
by a combination of careful language design, simple but powerful compiler optimizations, and
disciplined use of abstractions by programmers.
In this paper, we formally define the notions of type stability and groundedness, which guide

programmers towards code idioms the compiler can optimize. To this end, we model Julia’s in-
termediate representation with an abstract machine called Jules, prove the correctness of its JIT
compiler, and show that type groundedness is the property that enables the compiler to devirtualize
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method calls. The weaker notion of type stability is still useful as it allows callers of a function to be
grounded. This relationship between groundedness and stability explains the discrepancy between
the definition of stability and what programmers do in practice, namely, inspecting the compiler’s
output to look for variables that have abstract types. Our corpus analysis of Julia packages shows
that more than half of compiled methods are grounded, and over two-thirds are stable. This suggests
that developers follow type-related performance guidelines.
Although our analysis suggests high presence of type-stable code, some Julia packages, even

among more popular ones, have significant unstable portions. This may indicate an oversight
from the package authors, albeit an understandable one: the tools for detecting unstable code are
limited.7 There is a future work opportunity in developing a user-facing static type system that
would soundly determine whether a method is type stable or not. This could provide the benefits
of a traditional (gradual) type system, and additionally, allow programmers to ensure type stability.
A less demanding approach to facilitating stability would be to add primitives for reifying the
programmer’s intent. For example, the user could write assert(is_type_stable()) to indicate that
the method does not tolerate inefficient compilation.

Although the specific optimizations enabled by grounded code may not be as important for other
languages, they can benefit from the lessons learned from Julia’s performance model: namely, that
the interface exposed by a compiler can be just as important as the cleverness of the compiler itself.
Performance is not an isolated property: it is the result of a dialogue between the compiler and the
programmers that use it.
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and 2, and Fig. 11.
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