Towards Typing Julia

Ben Chung

Northeastern University

Abstract

Julia is a dynamic programming language designed for sci-
entific programming. Unlike traditional dynamic languages,
Julia contains optional type annotations for certain expres-
sions, which are used primarily to type function arguments.
To statically type Julia, it would be advantageous to use the
user-provided type annotations to infer any missing types.
In this abstract, we present an algorithm for type inference
of functions (and variable assignment) in Julia, a first step
towards statically typing Julia.

Keywords Multi-dispatch, gradual typing, type inference,
pattern matching

1 Introduction

Julia presents a paradox of different typing paradigms. Ju-
lia’s compiler produces no static type errors, only ‘method
not found’ errors at runtime, a hallmark of dynamic typ-
ing. However, like a statically typed language, Julia allows
programmers to write types in function signatures, and Ju-
lia’s dispatch mechanism guarantees that declared types are
sound. This would be an ideal opportunity for type infer-
ence, but for Julia’s use of multi-dispatch, popularized by the
Cecil language [2], to solve the expression problem [5]. This
feature allows Julia libraries to expose fluent and natural
interfaces that are defined exclusively through documenta-
tion, unlike Cecil, where external type checking guaranteed
adherence to interfaces, complicating type checking.

In this abstract, we outline an approach for type checking
Julia code, combining a bidirectional type system [3] with a
dispatch resolution mechanism based on pattern matching.
This approach allows us to handle several of the key difficul-
ties in type checking Julia code, including parametricity and
tuples.

2 Checking Calls

Invocations make up virtually all functionality in Julia, even
fundamental operations such as addition or indexing are
function calls. A Julia invocation will be dispatched to the
method with the most specific type matching the argument
values. During this stage two types of errors can occur, if
there is no implementation for the value passed, or if there
are multiple equally specific (ambiguous) implementations.

The first kind of error is eliminated by our definition of
type soundness, whereby an implementation must exists
for every well-typed function call. To ensure this guarantee,
we are required to ensure an implementation exists for any
argument of the known type, to infer its return type, and to
determine which implementation might be called to handle
that argument. A naive approach would fail, either because
of imprecise computation of intersection types or due to an

NOOL’17,,
2017. ACM ISBN ...$15.00
https://doi.org/

Paley Li

Czech Technical University

infinite regress of the subtyping hierarchies. Our solution
adapts prior work on checking the exhaustiveness of pattern
matching, and extents it to apply over multi-methods. We
define our reduction in the notation of Maranget [4], where
U(P, q) is true if and only if there is some value v that is
matched by g but not P, which can be thought of as “q is
useful if added to P” Note, we assume v is well-typed with
respect to the inferred argument types.

A call will succeed if the implementations handle ev-
ery possible well-typed argument, or if the call is exhaus-
tive. Exhaustivity is determined by applying the clause algo-
rithm [4] to the list of implementations I and the argument
type a. The argument type is treated as a new implemen-
tation whose usefulness we want to check, or equivalently
checking that U(I, a) is false. Likewise, if m; denotes the ith
most specific method, then m; would be called if and only
if U((my, ..., m;_1), m;) is true, which implies there is some
value v that m; matches that the more specific implementa-
tions do not.

Using this approach, we are able to ensure a call site will
always find an implementation, and determine which imple-
mentations (and return types) will be invoked with no loss
of precision.

3 Implementation

We have implemented this inference algorithm for a subset
of Julia’s syntax, including function definitions and calls,
variables, comprehensions, as well as standard control flow
constructs, but without parameterized type constructors and
modules. We are able to type check a limited amount of Julia
code with this subset. Our type checker, implemented in
Julia, loads the file (including dependencies) into the Julia
REPL, then uses the reflective capabilities of Julia to dis-
cover available implementations, and relies on Julia’s run-
time type inference mechanism to find return types. This
approach is guaranteed to be representative of the actual
runtime environment, and ties our implementation to the
Julia environment.

4 Conclusion

We have presented an algorithm in the presence of multi-
methods to determine if function calls in Julia will always
find an implementation, and identifies the relevant imple-
mentations. The algorithm is extensible to any multi dispatch
system with constraints that can be represented in the form
of pattern matching. We plan to extend our system to support
more of Julia, remove the dependency on Julia’s runtime by
building a static representation of the program, and develop
tools that would use the inferred typing information.

References

[1] Lennart Augustsson. 1985. Compiling pattern matching. In Functional
Programming Languages and Computer Architecture. Springer.

https://doi.org/

NOOL’17,,

[2] Craig Chambers. 1993. The Cecil Language. Technical Report. Depart-
ment of Computer Science and Engineering, University of Washing-
ton.

[3] Joshua Dunfield and Neelakantan R Krishnaswami. 2013. Complete
and easy bidirectional typechecking for higher-rank polymorphism.
In ACM SIGPLAN Notices. ACM.

[4] Luc Maranget. 2007. Warnings for pattern matching. Journal of
Functional Programming 17, 3 (2007), 387-421.

[5] Matthias Zenger and Martin Odersky. 2004. Independently extensible
solutions to the expression problem. Technical Report.

Ben Chung and Paley Li

	Abstract
	1 Introduction
	2 Checking Calls
	3 Implementation
	4 Conclusion
	References

